| REVISIONS |  |  |  |
| :---: | :--- | :---: | :--- |
| LTR | DESCRIPTION | DATE (YR-MO-DA) | APPROVED |
| A | Added changes in accordance with NOR 5962-R154-95. | $95-06-16$ | M. A. Frye |
| B | Added device type 03. Editorial changes throughout. | $95-12-05$ | M. A. Frye |
| C | Changes in accordance with NOR 5962-R006-97. | $96-10-04$ | Ray Monnin |
| D | Update drawing to current requirements. Editorial changes throughout. - gap | $02-03-13$ | Ray Monnin |
| E | Updated boilerplate for 5 year review. - Ihl | $11-05-16$ | Charles F. Saffle |
| F | Update drawing to reflect current MIL-PRF-38535 requirements. - IIb | $18-01-03$ | Charles F. Saffle |



DSCC FORM 2233
APR 97

1. SCOPE
1.1 Scope. This drawing documents two product assurance class levels consisting of high reliability (device class Q and M ) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels is reflected in the PIN.
1.2 PIN. The PIN is as shown in the following example:

1.2.1 RHA designator. Device classes $Q$ and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.
1.2.2 Device types. The device types identify the circuit function as follows:

| Device type | Generic number | Circuit function | Access time |
| :---: | :---: | :---: | :---: |
| 01 | $4005-10$ |  |  |
| 02 | $4005-6$ | 5000 gate programmable array | 10 ns |
| 03 | $4005-5$ | 5000 gate programmable array | 6 ns |
| 02 | 5000 gate programmable array | 5 ns |  |

1.2.3 Device class designator. The device class designator is a single letter identifying the product assurance level as follows:

## Device class Device requirements documentation

M Vendor self-certification to the requirements for MIL-STD-883 compliant, nonJAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A

Q or V Certification and qualification to MIL-PRF-38535
1.2.4 Case outlines. The case outlines are as designated in MIL-STD-1835 and as follows:

| Outline letter |  | Descriptive designator |  | Terminals |
| :---: | :---: | :---: | :---: | :---: |

1.2.5 Lead finish. The lead finish is as specified in MIL-PRF-38535 for device classes $Q$ and $V$ or MIL-PRF-38535, appendix A for device class M.

1/ $156=$ actual number of pins used, not maximum listed in MIL-STD-1835.
$\left.\begin{array}{|c|c|l|l|}\hline \text { STANDARD } \\ \text { MICROCIRCUIT DRAWING } \\ \text { DLA LAND AND MARITIME } \\ \text { COLUMBUS, OHIO 43218-3990 }\end{array} \quad \begin{array}{c}\text { SIZE } \\ \text { A }\end{array}\right)$

STANDARD

DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

### 1.3 Absolute maximum ratings. $\underline{2}$

Supply voltage range to ground potential ( $\mathrm{V}_{\mathrm{cc}}$ ) $\qquad$
-0.5 V dc to +7.0 V dc

DC input voltage range
-0.5 V dc to +7.0 V dc
-0.5 V dc to $\mathrm{Vcc}+0.5 \mathrm{~V} \mathrm{dc}$
-0.5 V dc to $\mathrm{Vcc}+0.5 \mathrm{~V} \mathrm{dc}$
Voltage applied to three-state output( $\mathrm{V}_{\text {TS }}$ )
Lead temperature (soldering, 10 seconds) $+260^{\circ} \mathrm{C}$
Thermal resistance, junction-to-case ( $\theta \mathrm{Jc}$ ):
Case outline X
See MIL-STD-1835
Case outlines $Y$ and $Z$
$20^{\circ} \mathrm{C} / \mathrm{W}$ 3/
Junction temperature ( $\mathrm{T}_{\mathrm{J}}$ )
$+150^{\circ} \mathrm{C}$
Storage temperature range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
1.4 Recommended operating conditions. 5/

| Case operating temperature Range $\left(\mathrm{T}_{\mathrm{c}}\right)$ | $\ldots . . . . . . . . . . . . . . . . . . . . . . . . . . ~$ | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- |
| Supply voltage relative to ground $(\mathrm{Vcc})$ |  |  |
| Ground voltage (GND) | ................................................................. | +4.5 V dc minimum to +5.5 V dc maximum |

2. APPLICABLE DOCUMENTS
2.1 Government specification, standards, and handbooks. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION
MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

## DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.
MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.
DEPARTMENT OF DEFENSE HANDBOOKS
MIL-HDBK-103 - List of Standard Microcircuit Drawings.
MIL-HDBK-780 - Standard Microcircuit Drawings.
(Copies of these documents are available online at http://quicksearch.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.
3/ When a thermal resistance for this case is specified in MIL-STD-1835 that value shall supersede the value indicated herein.
4/ Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with method 5004 of MIL-STD-883.
5/ All voltage values in this drawing are with respect to V ${ }_{\text {SS }}$.

| STANDARD MICROCIRCUIT DRAWING | $\begin{gathered} \hline \text { SIZE } \\ \mathbf{A} \end{gathered}$ |  | 5962-92252 |
| :---: | :---: | :---: | :---: |
| DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 |  | $\underset{\text { REVISION LEVEL }}{\text { F }}$ | SHEET |

DLA LAND AND MARITIME
2.2 Non-Government publications. The following document(s) form a part of this document to the extent specified herein. Unless otherwise specified, the issues of the documents are the issues of the documents cited in the solicitation.

JEDEC - SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)
JESD 78 - IC Latch-Up Test.
(Copies of these documents are available online at https://www.jedec.org or from JEDEC - Solid State Technology Association, 3103 North 10th Street, Suite 240-S, Arlington, VA 22201-2107.)
2.3 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

## 3. REQUIREMENTS

3.1 Item requirements. The individual item requirements for device classes $Q$ and $V$ shall be in accordance with MIL-PRF-38535 as specified herein, or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.
3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.
3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.4 herein and figure 1.
3.2.2 Terminal connections. The terminal connections shall be as specified on figure 2.
3.2.3 Logic block diagram. The logic block diagram shall be as specified on figure 3.
3.3 Electrical performance characteristics and postirradiation parameter limits. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full case operating temperature range.
3.4 Electrical test requirements. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table I.
3.5 Marking. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A.
3.5.1 Certification/compliance mark. The certification mark for device classes $Q$ and $V$ shall be a " QML " or " Q " as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.
3.6 Certificate of compliance. For device classes $Q$ and $V$, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.7.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.7.2 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes $Q$ and $V$, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.
3.7 Certificate of conformance. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

| SIZE <br> A |  | $5962-92252$ |
| :---: | :---: | :--- |
|  | REVISION LEVEL <br> F | SHEET |

3.8 Notification of change for device class M. For device class M, notification to DLA Land and Maritime-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change that affects this drawing.
3.9 Verification and review for device class M. For device class M, DLA Land and Maritime, DLA Land and Maritime's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
3.10 Microcircuit group assignment for device class $M$. Device class $M$ devices covered by this drawing shall be in microcircuit group number 042 (see MIL-PRF-38535, appendix A).
3.11 Operational notes. Additional information shall be provided by the device manufacturer (see 6.6 herein).

| STANDARD <br> MICROCIRCUIT DRAWING <br> DLA LAND AND MARITIME | $\begin{gathered} \mathrm{SIZE} \\ \mathbf{A} \end{gathered}$ |  | 5962-92252 |
| :---: | :---: | :---: | :---: |
|  |  | $\underset{\text { REVISION LEVEL }}{\text { F }}$ | SHEET 5 |

## STANDARD

F

TABLE I. Electrical performance characteristics.

| Test | Symbol | Conditions $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}} \leq 5.5 \mathrm{~V}$ $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$ <br> unless otherwise specified | Group A Subgroups | Device type | Limits |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min | Max |  |
| High Level output voltage | VOH | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{l}_{\mathrm{OH}}=-4.0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V} \end{aligned}$ | 1, 2, 3 | All | 2.4 |  | V |
| Low level output voltage 1/ | VoL | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{loL}=4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V} \mathrm{VH}=2.0 \mathrm{~V} \end{aligned}$ | 1, 2, 3 | All |  | 0.4 | V |
| Dynamic power consumption 2/3/ |  | $\mathrm{V}_{C C}=5.5 \mathrm{~V}$ | 1, 2, 3 | All |  | 2/ | mW/MHz |
| Quiescent LCA supply current | Icco | $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ | 1, 2, 3 | All |  | 50 | mA |
| Input leakage current | IIL | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { and } 5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$ | 1, 2, 3 | All | -10 | +10 | uA |
| Output leakage current | IoL | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ and 5.5 V , <br> $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ with no load | 1, 2, 3 | All | -1.0 | +1.0 | uA |
| Pad pull-up current (when selected) | IRIN | V IN $=0 \mathrm{~V}$ | 1, 2, 3 | All |  | 0.5 | mA |
| Horizontal long line pull-up current (when selected) | IrLL | At logic low | 1, 2, 3 | All |  | 5.0 | mA |
| Input capacitance | $\mathrm{CIN}_{\text {I }}$ | See 4.4.1e | 4 | All |  | 16 | pF |
| Output capacitance | Cout | See 4.4.1e | 4 | All |  | 16 | pF |
| Functional test | FT | See 4.4.1c | 7, 8A, 8B | All |  |  |  |
| Interconnect + tPID + tops + tILO | $\mathrm{t}_{\mathrm{B} 1}$ |  | 9, 10, 11 | 01 |  | 197.3 | ns |
|  |  |  |  | 02 |  | 124 |  |
|  |  |  |  | 03 |  | 94.4 |  |
| $\begin{aligned} & \text { Interconnect + } \\ & \text { tPID + thHo + tops } \end{aligned}$ | tB2 |  | 9, 10, 11 | 01 |  | 170.9 | ns |
|  |  |  |  | 02 |  | 138.7 |  |
|  |  |  |  | 03 |  | 102.2 |  |
| $\begin{aligned} & \text { Interconnect + } \\ & \text { tPID }+ \text { tops + tIHO } \end{aligned}$ | $\mathrm{t}_{\mathrm{B}}$ |  | 9, 10, 11 | 01 |  | 252.7 | ns |
|  |  |  |  | 02 |  | 151.6 |  |
|  |  |  |  | 03 |  | 129.2 |  |
| $\begin{aligned} & \text { Interconnect + } \\ & \text { tPID }+ \text { tops + trio } \end{aligned}$ | $\mathrm{t}_{\mathrm{B}}$ |  | 9, 10, 11 | 01 |  | 270.0 | ns |
|  |  |  |  | 02 |  | 167.4 |  |
|  |  |  |  | 03 |  | 144.8 |  |
| $\begin{aligned} & \text { Interconnect + } \\ & \text { tcko + tıck + tckı } \end{aligned}$ | $\mathrm{t}_{\mathrm{B}}$ |  | 9, 10, 11 | 01 |  | 22.6 | ns |
|  |  |  |  | 02 |  | 12.6 |  |
|  |  |  |  | 03 |  | 8.8 |  |
| ```Interconnect + tско + tннск + tскнн``` | tB6 |  | 9, 10, 11 | 01 |  | 20.7 | ns |
|  |  |  |  | 02 |  | 13.6 |  |
|  |  |  |  | 03 |  | 9.3 |  |
| ```Interconnect + tско + tIHCK + tскIH``` | $\mathrm{t}_{\mathrm{B} 7}$ |  | 9, 10, 11 | 01 |  | 26.6 | ns |
|  |  |  |  | 02 |  | 14.6 |  |
|  |  |  |  | 03 |  | 10.3 |  |

See footnotes at end of table.

| STANDARD <br> MICROCIRCUIT DRAWING | $\begin{gathered} \hline \mathrm{SIZE} \\ \mathbf{A} \end{gathered}$ |  | 5962-92252 |
| :---: | :---: | :---: | :---: |
| DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 |  | $\underset{\text { REVISION LEVEL }}{\text { F }}$ | SHEET |

STANDARD
ICROCIRCUIT DRAWING
COLUMBUS, OHIO 43218-3990

TABLE I. Electrical performance characteristics - continued.

| Test | Symbol | Conditions $\begin{gathered} 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C} \end{gathered}$ <br> unless otherwise specified | Group A Subgroups | Device type | Limits |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min | Max |  |
| ```Interconnect + tскo + tdıck + tckdı``` | $\mathrm{t}_{\mathrm{B} 8}$ |  | 9, 10, 11 | 01 |  | 18.7 | ns |
|  |  |  |  | 02 |  | 10.6 |  |
|  |  |  |  | 03 |  | 7.3 |  |
| ```Interconnect + tско + tecck + tскес``` | $\mathrm{t}_{\text {B9 }}$ |  | 9, 10, 11 | 01 |  | 23.6 | ns |
|  |  |  |  | 02 |  | 13.6 |  |
|  |  |  |  | 03 |  | 8.3 |  |
| ```Interconnect + tPID + tops + topCY + tsum -tBYP``` | $\mathrm{t}_{\mathrm{B} 10}$ |  | 9, 10, 11 | 01 |  | 279.3 | ns |
|  |  |  |  | 02 |  | 209.4 |  |
|  |  |  |  | 03 |  | 162.1 |  |
| ```Interconnect + tPID + tops + tasCy + tsum -tBYp``` | $\mathrm{t}_{\mathrm{B} 11}$ |  | 9, 10, 11 | 01 |  | 318.3 | ns |
|  |  |  |  | 02 |  | 222.4 |  |
|  |  |  |  | 03 |  | 168.6 |  |
| ```Interconnect + tPID + tops + tINCY + tsum``` | $\mathrm{t}_{\mathrm{B} 12}$ |  | 9, 10, 11 | 01 |  | 167.2 | ns |
|  |  |  |  | 02 |  | 128.4 |  |
|  |  |  |  | 03 |  | 95.3 |  |
| ```Interconnect + tPID + tops +tincy + tsum + tBYP``` | $\mathrm{t}_{\mathrm{B} 13}$ |  | 9, 10, 11 | 01 |  | 78.3 | ns |
|  |  |  |  | 02 |  | 58.2 |  |
|  |  |  |  | 03 |  | 43.7 |  |
| WIDE DECODER SWITCHING CHARACTERISTIC |  |  |  |  |  |  |  |
| Full length, both pull-ups inputs from IOB I-pins | Twaf | See figures 4 and 5 as applicable. $\underline{5}$ | 3/ | 01 |  | 12 | ns |
|  |  |  |  | 02 |  | 10 |  |
|  |  |  |  | 03 |  | 9 |  |
| Full length, both pull-ups inputs from internal logic | Twafl |  | 3/ | 01, 02 |  | 13 | ns |
|  |  |  |  | 03 |  | 12 |  |
| Half length, one pull-up inputs from IOB I-pins | Twao |  | 3/ | 01 |  | 12 | ns |
|  |  |  |  | 02 |  | 10 |  |
|  |  |  |  | 03 |  | 9 |  |
| Half length, one pull-up inputs from internal logic | Twaol |  | 3/ | 01, 02 |  | 13 | ns |
|  |  |  |  | 03 |  | 12 |  |
| CLB SWITCHING CHARACTERISTICS |  |  |  |  |  |  |  |
| Combinatorial delay F/G inputs to $\mathrm{X} / \mathrm{Y}$ outputs | TILO | See figures 4 and 5 as applicable. | 6/ | 01 |  | 10 | ns |
|  |  |  |  | 02 |  | 6 |  |
|  |  |  |  | 03 |  | 4.5 |  |
| Combinatorial delay F/G inputs via $\mathrm{H}^{\prime}$ to $\mathrm{X} / \mathrm{Y}$ outputs | Тіно |  | 6/ | 01 |  | 14 | ns |
|  |  |  |  | 02 |  | 8 |  |
|  |  |  |  | 03 |  | 7 |  |
| Combinatorial delay C inputs via $\mathrm{H}^{\prime}$ to $\mathrm{X} / \mathrm{Y}$ outputs | Тнно |  | $\underline{6}$ | 01 |  | 8 | ns |
|  |  |  |  | 02 |  | 7 |  |
|  |  |  |  | 03 |  | 5 |  |

See footnotes at end of table.
$\left.\begin{array}{|c|c|c|c|}\hline \text { STANDARD } \\ \text { MICROCIRCUIT DRAWING } \\ \text { DLA LAND AND MARITIME } \\ \text { COLUMBUS, OHIO 43218-3990 }\end{array} \quad \begin{array}{c}\text { SIZE } \\ \text { A }\end{array}\right)$

COLUMBUS, OHIO 43218-3990

TABLE I. Electrical performance characteristics - continued.

| Test | Symbol | Conditions $\begin{gathered} 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}} \leq 5.5 \mathrm{~V} \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C} \end{gathered}$ <br> unless otherwise specified | Group A Subgroups | Device type | Limits |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min | Max |  |
| CLB fast carry logic operand inputs (F1,F2,G1, G4) to Cout | Topcy | See figures 4 and 5, as applicable | 7/ | 01 |  | 8 | ns |
|  |  |  |  | 02 |  | 7 |  |
|  |  |  |  | 03 |  | 5.5 |  |
| CLB fast carry logic add/subtract input (F3) to Cout | $\mathrm{T}_{\text {ASCY }}$ |  | 7/ | 01 |  | 11 | ns |
|  |  |  |  | 02 |  | 8 |  |
|  |  |  |  | 03 |  | 6 |  |
| CLB fast carry logic initialization inputs (F1,F3) to Cout | TINCY |  | 7/ | 01, 02 |  | 6 | ns |
|  |  |  |  | 03 |  | 4 |  |
| CLB fast carry logic $\mathrm{CIN}_{\mathrm{IN}}$ through function generators to $\mathrm{X} / \mathrm{Y}$ outputs | Tsum |  | 7/ | 01 |  | 12 | ns |
|  |  |  |  | 02 |  | 8 |  |
|  |  |  |  | 03 |  | 6 |  |
| CLB fast carry logic Cin to Cout, bypass function generators | TBYP |  | 7/ | 01 |  | 3 | ns |
|  |  |  |  | 02 |  | 2 |  |
|  |  |  |  | 03 |  | 1.5 |  |
| Sequential delays clock K to outputs Q | Тско |  | 6/ | 01 |  | 9 | ns |
|  |  |  |  | 02 |  | 5 |  |
|  |  |  |  | 03 |  | 3 |  |
| Set-up time before clock K, F/G inputs | TICK |  | 6/ | 01 | 11 |  | ns |
|  |  |  |  | 02 | 6 |  |  |
|  |  |  |  | 03 | 4.5 |  |  |
| Set-up time before clock K, F/G inputs via $\mathrm{H}^{\prime}$ | TIHCK |  | 6/ | 01 | 15 |  | ns |
|  |  |  |  | 02 | 8 |  |  |
|  |  |  |  | 03 | 6 |  |  |
| Set-up time before clock K, C inputs via H 1 | THHCK |  | 6/ | 01 | 9 |  | ns |
|  |  |  |  | 02 | 7 |  |  |
|  |  |  |  | 03 | 5 |  |  |
| Set-up time before clock K, C inputs via DIN | T DICK |  | 6/ | 01 | 7 |  | ns |
|  |  |  |  | 02 | 4 |  |  |
|  |  |  |  | 03 | 3 |  |  |

See footnotes at end of table.

| STANDARD MICROCIRCUIT DRAWING | $\begin{gathered} \hline \text { SIZE } \\ \mathbf{A} \end{gathered}$ |  | 5962-92252 |
| :---: | :---: | :---: | :---: |
| DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 |  | $\begin{aligned} & \text { REVISION LEVEL } \\ & \mathbf{F} \end{aligned}$ | SHEET |

TABLE I. Electrical performance characteristics - continued.

| Test | Symbol | Conditions $\begin{gathered} 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}} \leq 5.5 \mathrm{~V} \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C} \end{gathered}$ <br> unless otherwise specified | Group A Subgroups | Device type | Limits |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min | Max |  |
| Set-up time before clock K, C inputs via EC | TECCK | See figures 4 and 5, as applicable. | 6/ | 01 | 12 |  | ns |
|  |  |  |  | 02 | 7 |  |  |
|  |  |  |  | 03 | 4 |  |  |
| Set-up time before clock K, C inputs via S/R, going low (inactive) | Trck |  | 3/ | 01 | 10 |  | ns |
|  |  |  |  | 02 | 6 |  |  |
|  |  |  |  | 03 | 4.5 |  |  |
| Set-up time before clock K, $\mathrm{C}_{\text {IN }}$ input via F'/G' | Tcck |  | 3/ | 01, 02 | 8 |  | ns |
|  |  |  |  | 03 | 6 |  |  |
| Set-up time before clock K Cin input via $\mathrm{F}^{\prime} / \mathrm{G}^{\prime}$ and $\mathrm{H}^{\prime}$ | TCHCK |  | 3/ | 01, 02 | 10 |  | ns |
|  |  |  |  | 03 | 7.5 |  |  |
| Hold time after clock K, F/G inputs | TCKı |  | 6/ | All | 0 |  | ns |
| Hold time after clock K, F/G inputs via $\mathrm{H}^{\prime}$ | TCKIH |  | 6/ | All | 0 |  | ns |
| Hold time after clock K, C inputs via H 1 | TСКНн |  | 6/ | All | 0 |  | ns |
| Hold time after clock K, C inputs via DIN | TCKDI |  | 6/ | All | 0 |  | ns |
| Hold time after clock K, C inputs via EC | TCKEC |  | 6/ | All | 0 |  | ns |
| Hold time after clock K, C inputs via $S / R$, going low (inactive) | TCKR |  | 3/ | All | 0 |  | ns |
| Clock high time | $\mathrm{T}_{\text {ch }}$ |  | 3/ | 01 | 5.5 |  | $n s$ |
|  |  |  |  | 02 | 5 |  |  |
|  |  |  |  | 03 | 4.5 |  |  |
| Clock low time | TCL |  | 3/ | 01 | 5.5 |  | ns |
|  |  |  |  | 02 | 5 |  |  |
|  |  |  |  | 03 | 4.5 |  |  |

See footnotes at end of table.

| STANDARD MICROCIRCUIT DRAWING | $\begin{gathered} \hline \text { SIZE } \\ \mathbf{A} \end{gathered}$ |  | 5962-92252 |
| :---: | :---: | :---: | :---: |
| DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 |  | $\underset{\text { REVISION LEVEL }}{\text { F }}$ | SHEET |

TABLE I. Electrical performance characteristics - continued.

| Test | Symbol | Conditions $\begin{gathered} 4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V} \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C} \end{gathered}$ <br> unless otherwise specified | Group A Subgroups | Device type | Limits |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min | Max |  |

CLB SWITCHING CHARACTERISTICS - continued.

| Set/Reset direct width (high) | TRPW | See figures 4 and 5, as applicable. | 3/ | 01 | 6 |  | ns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 02 | 5 |  |  |
|  |  |  |  | 03 | 4 |  |  |
| Set/Reset direct delay from C to Q | TRIO |  | 6/ | 01 |  | 15 | ns |
|  |  |  |  | 02 |  | 9 |  |
|  |  |  |  | 03 |  | 8 |  |
| Master set/reset width (high or low) | TMRW |  | 3/ | 01 | 24 |  | ns |
|  |  |  |  | 02 | 21 |  |  |
|  |  |  |  | 03 | 18 |  |  |
| Master set/reset delay from global set/reset net to Q | TMRQ |  | 3/ | 01 |  | 37 | ns |
|  |  |  |  | 02 |  | 33 |  |
|  |  |  |  | 03 |  | 31 |  |

CLB SWITCHING CHARACTERISTIC (RAM OPTION)

| Read operation, address read cycle time$(16 \times 2)$ | TRC | See figures 4 and 5 , as applicable. 8 / | 9/ | 01 | 12 |  | ns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 02 | 7 |  |  |
|  |  |  |  | 03 | 5.5 |  |  |
| Read operation, address read cycle time (32 X 1) | TrCt |  | 9/ | 01 | 15 |  | ns |
|  |  |  |  | 02 | 10 |  |  |
|  |  |  |  | 03 | 7.5 |  |  |
| Read operation data valid after address change (no write enable) ( 16 X 2 ) | TILO |  | 9/ | 01 |  | 10 | ns |
|  |  |  |  | 02 |  | 6 |  |
|  |  |  |  | 03 |  | 4.5 |  |
| Read operation data valid after address change (no write enable) ( $32 \times 1$ ) | Tіно |  | 9/ | 01 |  | 14 | ns |
|  |  |  |  | 02 |  | 8 |  |
|  |  |  |  | 03 |  | 7 |  |
| Read during write, clocking data into flipflop address setup time before clock K (32 x 1) | Tick |  | 9/ | 01 | 11 |  | ns |
|  |  |  |  | 02 | 6 |  |  |
|  |  |  |  | 03 | 4.5 |  |  |

See footnotes at end of table.

| STANDARD <br> MICROCIRCUIT DRAWING | $\begin{gathered} \hline \text { SIZE } \\ \mathbf{A} \end{gathered}$ |  | 5962-92252 |
| :---: | :---: | :---: | :---: |
| DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 |  | $\underset{\text { REVISION LEVEL }}{\text { F }}$ | SHEET 10 |

TABLE I. Electrical performance characteristics - continued.

| Test | Symbol | Conditions $\begin{gathered} 4.5 \mathrm{~V} \leq \mathrm{VCc} \leq 5.5 \mathrm{~V} \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C} \end{gathered}$ <br> unless otherwise specified | Group A Subgroups | Device type | Limits |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min | Max |  |
| Read during write, clocking data into flip flop address setup time before clock K (32 X 1) | TıHCK | See figures 4 and 5, as applicable $\underline{8} /$ | $\underline{9}$ | 01 | 15 |  | ns |
|  |  |  |  | 02 | 8 |  |  |
|  |  |  |  | 03 | 6 |  |  |
| Read during write data valid after WE going active ( $16 \times 2$ ) | Two |  | 9/ | 01 |  | 15 | ns |
|  |  |  |  | 02 |  | 12 |  |
|  |  |  |  | 03 |  | 10 |  |
| Read during write, (DIN stable before WE) (32 X 1) | Twot |  | 9/ | 01 |  | 27 | ns |
|  |  |  |  | 02 |  | 15 |  |
|  |  |  |  | 03 |  | 12 |  |
| Read during write, data valid after DIN (16 X 2) | Too |  | 9/ | 01 |  | 19 | ns |
|  |  |  |  | 02 |  | 11 |  |
|  |  |  |  | 03 |  | 9 |  |
| Read during write, (DIN change during WE) (32 X 1) | Toot |  | 9/ | 01 |  | 22 | ns |
|  |  |  |  | 02 |  | 14 |  |
|  |  |  |  | 03 |  | 11 |  |
| Read during write, clocking data into flip flop, WE setup time before clock K (16 X 2) | Twck |  | 9/ | 01 | 15 |  | ns |
|  |  |  |  | 02 | 12 |  |  |
|  |  |  |  | 03 | 10 |  |  |
| Read during write, clocking data into flipflop WE setup time before clock K (32 X 1) | TwCKT |  | 9/ | 01 | 27 |  | ns |
|  |  |  |  | 02 | 15 |  |  |
|  |  |  |  | 03 | 12 |  |  |
| Read during write, clocking data into flipflop, data setup time before clock K (16 X 2) | T ${ }_{\text {dCK }}$ |  | 9/ | 01 | 19 |  | ns |
|  |  |  |  | 02 | 11 |  |  |
|  |  |  |  | 03 | 9 |  |  |
| Read during write, clocking data into flip flop, data setup time before clock K (32 X 1) | TDCKT |  | 9/ | 01 | 22 |  | ns |
|  |  |  |  | 02 | 14 |  |  |
|  |  |  |  | 03 | 11 |  |  |

See footnotes at end of table.

| STANDARD MICROCIRCUIT DRAWING | $\begin{gathered} \hline \text { SIZE } \\ \mathbf{A} \end{gathered}$ |  | 5962-92252 |
| :---: | :---: | :---: | :---: |
| DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 |  | $\underset{\text { REVISION LEVEL }}{\text { F }}$ | SHEET 11 |

COLUMBUS, OHIO 43218-3990
11

TABLE I. Electrical performance characteristics - continued.

| Test | Symbol | Conditions $\begin{gathered} 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Cc}} \leq 5.5 \mathrm{~V} \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C} \end{gathered}$ <br> unless otherwise specified | Group A Subgroups | Device type | Limits |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min | Max |  |
| Write operation, address write cycle time (16 X 2) | Twc | See figures 4 and 5 , as applicable. $\underline{8 /}$ | 9/ | 01 | 16 |  | ns |
|  |  |  |  | 02 | 9 |  |  |
|  |  |  |  | 03 | 8 |  |  |
| Write operation, address write cycle time (32 X 1) | Twct |  | $\underline{9}$ | 01 | 16 |  | ns |
|  |  |  |  | 02 | 9 |  |  |
|  |  |  |  | 03 | 8 |  |  |
| Write operation, write enable pulse width (high) (16 X 2) | Twp |  | 9/ | 01 | 12 |  | ns |
|  |  |  |  | 02 | 5 |  |  |
|  |  |  |  | 03 | 4 |  |  |
| Write operation, write enable pulse width (high) ( $32 \times 1$ ) | TwPT |  | 9/ | 01 | 12 |  | ns |
|  |  |  |  | 02 | 5 |  |  |
|  |  |  |  | 03 | 4 |  |  |
| Write operation, address setup time before beginning of WE (16 X 2) | $\mathrm{T}_{\mathrm{AS}}$ |  | 9/ | All | 2 |  | ns |
| Write operation, address setup time before beginning of WE (32 X 1) | TAST |  | 9/ | All | 2 |  | ns |
| Write operation, address hold time after end of WE (16 X 2) | $\mathrm{T}_{\text {AH }}$ |  | 9/ | All |  | 2 | ns |
| Write operation, address hold time after end of WE (32 X 1) | $\mathrm{T}_{\text {AHT }}$ |  | 9/ | All |  | 2 | ns |
| Write operation, DIN setup time before end of WE (16 X 2) | Tds |  | 9/ | All | 4 |  | ns |
| Write operation, DIN setup time before end of WE (32 X 1) | TDST |  | 9/ | All | 5 |  | ns |
| Write operation, DIN hold time after end of WE | TDHT |  | 9/ | All |  | 2 | ns |

See footnotes at end of table.

| STANDARD MICROCIRCUIT DRAWING | $\begin{gathered} \hline \text { SIZE } \\ \mathbf{A} \end{gathered}$ |  | 5962-92252 |
| :---: | :---: | :---: | :---: |
| DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 |  | $\underset{\mathrm{F}}{\text { REVISION LEVEL }}$ | SHEET 12 |

TABLE I. Electrical performance characteristics - continued.

| Test | Symbol | Conditions $\begin{gathered} 4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V} \\ -55^{\circ} \mathrm{C} \leq \mathrm{Tc} \leq+125^{\circ} \mathrm{C} \end{gathered}$ <br> unless otherwise specified | Group A Subgroups | Device type | Limits |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min | Max |  |

IOB SWITCHING CHARACTERISTIC

| Input propagation | TPID | See figures 4 and 5 as applicable. <br> 10/11/ | 6/ | 01,02 |  | 4 | ns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| delay, pad to 11, |  |  |  | 03 |  | 3 |  |
| Input propagation delay, pad to I1, I2, via transparent latch (fast) | TPLI |  | 3/ | 01 |  | 13 | ns |
|  |  |  |  | 02 |  | 8 |  |
|  |  |  |  | 03 |  | 7 |  |
| Input propagation delay, pad to I1, I2, via transparent latch (with delay) | TPDLI |  | 3/ | 01 |  | 30 | ns |
|  |  |  |  | 02 |  | 26 |  |
|  |  |  |  | 03 |  | 24 |  |
| Input propagation delay, clock (IK) to I1, I2, (flip-flop) | TIKRI |  | 3/ | 01 |  | 8.5 | ns |
|  |  |  |  | 02 |  | 8 |  |
|  |  |  |  | 03 |  | 7 |  |
| Input propagation delay, clock (IK) to I1, I2, (latch enable) | TıкцІ |  | 3/ | 01 |  | 9 | ns |
|  |  |  |  | 02 |  | 8 |  |
|  |  |  |  | 03 |  | 7 |  |
| Setup time, pad to clock (IK), fast | TPICK | See figures 4 and 5 as applicable.$10 / 11 / 12$ | 3/ | 01 | 9 |  | ns |
|  |  |  |  | 02 | 7 |  |  |
|  |  |  |  | 03 | 6 |  |  |
| Setup time, pad to clock (IK), with delay | TPICKD |  | 3/ | 01 | 35 |  | ns |
|  |  |  |  | 02 | 25 |  |  |
|  |  |  |  | 03 | 24 |  |  |
| Hold time, pad to clock (IK), fast | TIKPI |  | 3/ | All |  | 1 | ns |
| Hold time, pad to clock (IK), with delay | TIKPID |  | 3/ | All |  | negative | ns |
| Output propagation delay clock (OK) to pad, (fast) | TokPOF | See figures 4 and 5 as applicable. 10/11/ | 3/ | 01 |  | 11 | ns |
|  |  |  |  | 02 |  | 7.5 |  |
|  |  |  |  | 03 |  | 7 |  |
| Output propagation delay clock (OK) to pad (slew rate limited) | Tokpos |  | 3/ | 01 |  | 16 | ns |
|  |  |  |  | 02 |  | 11.5 |  |
|  |  |  |  | 03 |  | 10 |  |

See footnotes at end of table.

| SIZE <br> A |  | 5962-92252 |
| :---: | :---: | :---: |
|  | REVISION LEVEL <br> F | SHEET |
|  |  |  |

TABLE I. Electrical performance characteristics - continued.

| Test | Symbol | Conditions $\begin{gathered} 4.5 \mathrm{~V} \leq \mathrm{VCc} \leq 5.5 \mathrm{~V} \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C} \end{gathered}$ <br> unless otherwise specified | Group A Subgroups | Device type | Limits |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min | Max |  |
| Output propagation delay output (O) to pad (fast) | TopF | See figures 4 and 5 as applicable.$\text { 10/ } 11$ | 3/ | 01 |  | 10 | ns |
|  |  |  |  | 02 |  | 9 |  |
|  |  |  |  | 03 |  | 7 |  |
| Output propagation delay output (O) to pad (slew rate limited) | Tops |  | 6/ | 01 |  | 15 | ns |
|  |  |  |  | 02 |  | 13 |  |
|  |  |  |  | 03 |  | 10 |  |
| Output propagation delay 3-state to pad begin hi-z (fast) | TTSHzF |  | 3/ | 01 |  | 10 | ns |
|  |  |  |  | 02 |  | 9 |  |
|  |  |  |  | 03 |  | 7 |  |
| Output propagation delay 3 -state to pad active and valid (fast) | TTSONF |  | 3/ | 01 |  | 15 | ns |
|  |  |  |  | 02 |  | 13 |  |
|  |  |  |  | 03 |  | 10 |  |
| Output propagation delay 3 -state to pad active and valid (slew rate limited) | Ttsons |  | 3/ | 01 |  | 20 | ns |
|  |  |  |  | 02 |  | 17 |  |
|  |  |  |  | 03 |  | 13 |  |
| Setup time, output (O) to clock (OK) | Took |  | 3/ | 01 | 13 |  | ns |
|  |  |  |  | 02 | 8 |  |  |
|  |  |  |  | 03 | 6 |  |  |
| Hold time, output (O) to clock (OK) | Токо |  | 3/ | All |  | 0 | ns |
| Clock high or low time | $\mathrm{T}_{\mathrm{CH}} / \mathrm{T}_{\text {CL }}$ |  | 3/ | 01 | 6 |  | ns |
|  |  |  |  | 02 | 5 |  |  |
|  |  |  |  | 03 | 4.5 |  |  |
| Global set/reset delay from GSR net through Q to 11, I2 | TRRI |  | 3/ | 01 |  | 20 | ns |
|  |  |  |  | 02 |  | 14.5 |  |
|  |  |  |  | 03 |  | 13.5 |  |
| Global set/reset delay from GSR net to pad | $\mathrm{T}_{\text {RPO }}$ |  | 3/ | 01 |  | 23 | ns |
|  |  |  |  | 02 |  | 18 |  |
|  |  |  |  | 03 |  | 17 |  |

See footnotes at end of table.

| STANDARD MICROCIRCUIT DRAWING | $\begin{gathered} \hline \text { SIZE } \\ \mathbf{A} \end{gathered}$ |  | 5962-92252 |
| :---: | :---: | :---: | :---: |
| DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 |  | $\underset{\text { REVISION LEVEL }}{\text { F }}$ | SHEET 14 |

COLUMBUS, OHIO 43218-3990

TABLE I. Electrical performance characteristics - continued.

| Test | Symbol | Conditions $\begin{gathered} 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cc}} \leq 5.5 \mathrm{~V} \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{c}} \leq+125^{\circ} \mathrm{C} \end{gathered}$ <br> unless otherwise specified | Group A Subgroups | Device type | Limits |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min | Max |  |
| Global set/reset GSR width | TMRW | See figures 4 and 5 as applicable. 10/ 11/ | 3/ | 01, 02 | 21 |  | ns |
|  |  |  |  | 03 | 18 |  |  |

1/ With 50 percent of the outputs or 64 pins maximum for any device simultaneously sinking 4 mA .
2/ 1 CLB driving 3 local interconnects $\qquad$ $0.30 \mathrm{~mW} / \mathrm{MHz}$ max. at 50 MHz max.
1 device output with a 50 pF load $1.20 \mathrm{~mW} / \mathrm{MHz}$ max. at 50 MHz max.
1 global clock buffer and line $5.10 \mathrm{~mW} / \mathrm{MHz} \max$. at 50 MHz max.
1 half longline without driver $0.24 \mathrm{~mW} / \mathrm{MHz}$ max. at 50 MHz max.

3/ Parameter is not tested but is guaranteed by characterization data which is taken at initial device introduction, prior to the introduction of significant changes, and at least twice yearly.

4/ With no output current loads, no active input or long line pull-resistors, all package pins at $\mathrm{V}_{\mathrm{cc}}$ or GND, and the LCA configured with a MakeBits "tie" option.

5/ These delays are specified from the decoder input to the decoder output. For pad-to-pad delays, add the input delay (TPID) and output delay (TOPF or TOPS).

6/ Parameter is not directly tested. Devices are first 100 percent functionally tested. Benchmark patterns ( $\mathrm{t}_{\mathrm{B} 1}$ $t_{\mathrm{B} 13}$ ) are then used to determine the compliance of this parameter. Characterization data is taken initially and after any design or process change which may affect this parameter.

7/ Benchmark patterns ( $\mathrm{t}_{\mathrm{B} 1}-\mathrm{t}_{\mathrm{B} 13}$ ) are used to determine compliance of this parameter.
8/ Timing for the $16 \times 1$ RAM option is identical to $16 \times 2$ RAM timing.
9/ Values indicated are guaranteed by characterization data if application note, provided by manufacturer, is followed. If application note is not followed, indicated values are typical only.

10/ Timing is measured at pin threshold, with 50 pF external capacitive loads including test fixture. Slew rate limited output rise/fall times are approximately two times longer than fast output rise/fall times. A maximum total external capacitive load for simultaneous fast mode switching in the same direction is 200 pF per power/ground pin pair. For slew-rate limited outputs this total is two times larger. Exceeding this maximum capacitive load can result in ground bounce of greater than 1.5 V amplitude, less than 5 ns duration, which might cause problems when the LCA drives clocks and other asynchronous signals.

11/ Voltage levels of unused (bonded and unbonded) pads must be valid logic levels. Each can be configured with the internal pull-up or pull-down resistor or alternatively configured as a driven output or be driven from an external source.

12/ Input pad setup times and hold times are specified with respect to the internal clock (IK). To calculate system setup time, subtract clock delay (clock pad to IK) from the specified input pad setup time value, but do not subtract below zero. "Negative" hold time means that the delay in the input data is adequate for the external system hold time to be zero, provided the input clock uses the global signal distribution from pad to IK.

| SIZE <br> A |  | 5962-92252 |  |
| :---: | :---: | :---: | :---: |
|  | REVISION LEVEL <br> F | SHEET |  |
|  |  | 15 |  |

Case $Y$


NOTE:

1. Package has top marking on lid side, therefore, pin out goes counterclockwise when device is mounted with lid in up position.

FIGURE 1. Case outline.

| STANDARD | SIZE |  | 5962-92252 |
| :---: | :---: | :---: | :---: |
| MICROCIRCUIT DRAWING <br> DLA LAND AND MARITIME <br> COLUMBUS, OHIO 43218-3990 | A | REVISION LEVEL |  |
|  |  | SHEET |  |

## Case Z



NOTE:

1. Package has top marking on non-lid side, therefore, pin out goes clockwise when device is mounted with lid in down position.

FIGURE 1. Case outline - Continued.

| STANDARD <br> MICROCIRCUIT DRAWING | $\begin{gathered} \hline \text { SIZE } \\ \mathbf{A} \end{gathered}$ |  | 5962-92252 |
| :---: | :---: | :---: | :---: |
| DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 |  | REVISION LEVEL | SHEET 17 |

## Cases $Y$ and $Z$

| Inches | mm |  | Inches | mm |
| :--- | :--- | :--- | :--- | :--- |
| .001 | 0.02 |  |  |  |
| .002 | 0.05 | .035 | 0.89 |  |
| .005 | 0.13 |  | .040 | 1.02 |
| .006 | 0.15 | .043 | 1.09 |  |
| .007 | 0.18 |  | .115 | 2.18 |
| .008 | 0.20 | .695 | 17.62 |  |
| .010 | 0.25 | .845 | 21.46 |  |
| .0175 | 0.44 | 1.130 | 28.70 |  |
| .020 | 0.51 | 1.290 | 32.77 |  |
| .021 | 0.53 | 1.500 | 38.10 |  |
| .025 | 0.64 |  | 2.300 | 58.42 |
| .030 | 0.76 |  | 2.500 | 63.50 |

NOTE: The US government preferred system of measurement is the metric SI system. However, this item was originally designed using inch-pound units of measurement. In the event of conflict between the metric and inch-pound units, the inch-pound units shall take precedence.

FIGURE 1. Case outline - Continued.

| STANDARD MICROCIRCUIT DRAWING <br> DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 | $\begin{gathered} \text { SIZE } \\ \mathbf{A} \end{gathered}$ |  | 5962-92252 |
| :---: | :---: | :---: | :---: |
|  |  | $\underset{\text { REVISION LEVEL }}{\text { F }}$ | SHEET 18 |

Case outline X

| Device type | All | Device type | All | Device type | All |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Terminal number | Terminal symbol | Terminal number | Terminal symbol | Terminal number | Terminal symbol |
| A1 | I/O (A17) | C1 | I/O (A13) | F15 | I/O |
| A2 | I/O | C2 | I/O | F16 | I/O |
| A3 | I/O (TCK) | C3 | $V_{\text {cc }}$ | G1 | I/O (A9) |
| A4 | NC | C4 | GND | G2 | I/O |
| A5 | I/O (TMS) | C5 | I/O | G3 | I/O |
| A6 | I/O | C6 | GND | G14 | I/O |
| A7 | I/O | C7 | I/O | G15 | I/O |
| A8 | I/O | C8 | GND | G16 | I/O |
| A9 | I/O | C9 | I/O | H1 | I/O (A8) |
| A10 | I/O | C10 | I/O | H2 | GND |
| A11 | I/O | C11 | GND | H3 | Vcc |
| A12 | NC | C12 | I/O | H14 | V cc |
| A13 | I/O | C13 | GND | H15 | I/O (ERR, INIT) |
| A14 | I/O | C14 | Vcc | H16 | I/O |
| A15 | M1 | C15 | I/O | J1 | I/O |
| A16 | M0 | C16 | I/O (LDC) | J2 | I/O (A6) |
| B1 | I/O (A14) | D1 | NC | J3 | I/O (A7) |
| B2 | SGCK1 (A15, I/O) | D2 | NC | J14 | GND |
| B3 | PGCK1 (A16, I/O) | D3 | I/O | J15 | I/O |
| B4 | I/O (TDI) | D14 | I/O (HDC) | J16 |  |
| B5 | I/O | D15 | I/O |  |  |
| B6 | I/O | D16 | NC |  |  |
| B7 | I/O | E1 | I/O |  |  |
| B8 | Vcc | E2 | I/O |  |  |
| B9 | I/O | E3 | I/O (A12) |  |  |
| B10 | I/O | E14 | I/O |  |  |
| B11 | I/O | E15 | NC |  |  |
| B12 | I/O | E16 | I/O |  |  |
| B13 | I/O | F1 | I/O (A10) |  |  |
| B14 | SGCK2 (I/O) | F2 | I/O (A11) |  |  |
| B15 | M2 | F3 | GND |  |  |
| B16 | PGCK2 (I/O) | F14 | GND |  |  |

NC = NO CONNECT

FIGURE 2. Terminal connections.

| STANDARD | SIZE |  | 5962-92252 |
| :---: | :---: | :--- | :---: |
| MICROCIRCUIT DRAWING <br> DLA LAND AND MARITIME <br> COLUMBUS, OHIO 43218-3990 | A | REVISION LEVEL |  |
| F F |  |  |  |

STANDARD
CIRCUIT DRAWING
DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990

Case outline X - Continued.

| Device type | All | Device type | All | Device type | All |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Terminal number | Terminal symbol | Terminal number | Terminal symbol | Terminal number | Terminal symbol |
| K1 <br> K2 <br> K3 <br> K14 <br> K15 <br> K16 <br> L1 <br> L2 <br> L3 <br> L14 <br> L15 <br> L16 <br> M1 <br> M2 <br> M3 <br> M14 <br> M15 <br> M16 <br> N1 <br> N2 <br> N3 <br> N14 <br> N15 <br> N16 <br> P1 <br> P2 <br> P3 <br> P4 <br> P5 <br> P6 <br> P7 <br> P8 <br> P9 <br> P10 | I/O <br> I/O (A5) <br> I/O (A4) <br> I/O <br> I/O <br> I/O <br> I/O <br> I/O <br> GND <br> GND <br> I/O <br> I/O <br> NC <br> NC <br> I/O <br> I/O <br> NC <br> I/O <br> 1/O (A3) <br> I/O <br> GND <br> I/O <br> I/O <br> NC <br> I/O ( $\overline{\mathrm{CSI}}, \mathrm{A} 2$ ) <br> PGCK4 (A1, I/O) <br> Vcc <br> I/O (DO, DIN) <br> I/O ( $\overline{\mathrm{RCLK}}-\overline{\mathrm{BUSY}} / \mathrm{RDY}$ ) <br> GND <br> I/O (D2) <br> GND <br> I/O <br> $1 / 0(\overline{\mathrm{CSO}})$ | P11 <br> P12 <br> P13 <br> P14 <br> P15 <br> P16 <br> R1 <br> R2 <br> R3 <br> R4 <br> R5 <br> R6 <br> R7 <br> R8 <br> R9 <br> R10 <br> R11 <br> R12 <br> R13 <br> R14 <br> R15 <br> R16 <br> T1 <br> T2 <br> T3 <br> T4 <br> T5 <br> T6 <br> T7 <br> T8 <br> T9 <br> T10 <br> T11 <br> T12 | GND <br> I/O <br> Vcc <br> GND <br> I/O <br> I/O <br> I/O (A0, $\overline{\mathrm{WS}}$ ) <br> CCLK <br> I/O <br> I/O <br> NC <br> I/O <br> I/O <br> $V_{c c}$ <br> I/O (D4) <br> I/O <br> I/O <br> NC <br> I/O <br> $\overline{\mathrm{PROG}}$ <br> DONE <br> SGCK3 (I/O) <br> TD0 <br> SGCK4 (DOUT, I/O) <br> I/O (D1) <br> I/O <br> I/O <br> I/O <br> $1 / O(\overline{\mathrm{RS}})$ <br> I/O (D3) <br> I/O <br> I/O (D5) <br> I/O <br> NC | $\begin{aligned} & \text { T13 } \\ & \text { T14 } \\ & \text { T15 } \\ & \text { T16 } \end{aligned}$ | I/O <br> I/O (D6) <br> PGCK3 (I/O) <br> I/O (D7) |

NC = NO CONNECT

FIGURE 2. Terminal connections - Continued.

| STANDARD | SIZE |  |  |
| :---: | :---: | :---: | :---: |
| MICROCIRCUIT DRAWING |  |  |  |
| DLA LAND AND MARITIME |  |  |  |
| COLUMBUS, OHIO 43218-3990 |  |  |  |

Case outlines $Y$ and $Z$

| Device type | All | Device type | All | Device type | All |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Terminal number | Terminal symbol | Terminal number | Terminal symbol | Terminal number | Terminal symbol |
| $\begin{gathered} 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \end{gathered}$ | GND <br> PGCK1 (A16, I/O) <br> I/O (A17) <br> I/O <br> I/O <br> NC <br> I/O (TDI) <br> I/O (TCK) <br> NC <br> GND <br> I/O <br> I/O <br> I/O (TMS) <br> I/O <br> I/O <br> I/O <br> I/O <br> I/O <br> GND <br> Vcc <br> I/O <br> I/O <br> I/O <br> I/O <br> NC <br> I/O <br> I/O <br> I/O | 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | I/O <br> GND <br> NC <br> I/O <br> I/O <br> I/O <br> I/O <br> NC <br> I/O <br> SGCK2 (I/O) <br> M1 <br> GND <br> MO <br> $V_{c c}$ <br> M2 <br> PGCK2 (//O) <br> I/O (HDC) <br> I/O <br> NC <br> I/O <br> I/O <br> I/O (LDC) <br> NC <br> NC <br> GND <br> I/O <br> I/O <br> I/O | $\begin{aligned} & 57 \\ & 58 \\ & 59 \\ & 60 \\ & 61 \\ & 62 \\ & 63 \\ & 64 \\ & 65 \\ & 66 \\ & 67 \\ & 68 \\ & 69 \\ & 70 \\ & 71 \\ & 72 \\ & 73 \\ & 74 \\ & 75 \\ & 76 \\ & 77 \\ & 78 \\ & 79 \\ & 80 \\ & 81 \\ & 82 \\ & 83 \\ & 84 \end{aligned}$ | I/O <br> I/O <br> I/O <br> I/O <br> $\mathrm{I} / \mathrm{O}(\overline{\mathrm{ERR}}, \overline{\mathrm{INIT}})$ <br> Vcc <br> GND <br> I/O <br> GND <br> NC <br> NC <br> I/O <br> I/O <br> I/O <br> I/O <br> I/O <br> SGCK3 (I/O) <br> GND <br> DONE <br> Vcc <br> $\overline{\text { PROG }}$ |

NC = NO CONNECT

FIGURE 2. Terminal connections - Continued.

| STANDARD | SIZE |  | 5962-92252 |
| :---: | :---: | :--- | :---: |
| MICROCIRCUIT DRAWING <br> DLA LAND AND MARITIME <br> COLUMBUS, OHIO 43218-3990 | A | REVISION LEVEL |  |
| F |  |  |  |

STANDARD
CIRCUIT DRAWING
DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990
21

Case outlines $Y$ and $Z$ - Continued.

| Device type | All | Device type | All | Device type | All |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Terminal number | Terminal symbol | Terminal number | Terminal symbol | Terminal number | Terminal symbol |
| 85 86 <br> 87 <br> 88 <br> 89 <br> 90 <br> 91 <br> 92 <br> 93 <br> 94 <br> 95 <br> 96 <br> 97 <br> 98 <br> 99 <br> 100 <br> 101 <br> 102 <br> 103 <br> 104 <br> 105 <br> 106 <br> 107 <br> 108 <br> 109 <br> 110 <br> 111 | I/O (D7) <br> PGCK3 (I/O) <br> I/O <br> NC <br> I/O <br> I/O (D6) <br> I/O <br> NC <br> NC <br> GND <br> I/O <br> I/O <br> I/O (D5) <br> I/O ( $\overline{\mathrm{CS} 0}$ ) <br> I/O <br> I/O <br> I/O (D4) <br> I/O <br> Vcc <br> GND <br> I/O (D3) <br> I/O ( $\overline{\mathrm{RS}}$ ) <br> I/O <br> I/O <br> I/O (D2) <br> I/O <br> I/O | $\begin{aligned} & 112 \\ & 113 \\ & 114 \\ & 115 \\ & 116 \\ & 117 \\ & 118 \\ & 119 \\ & 120 \\ & 121 \\ & 122 \\ & 123 \\ & 124 \\ & 125 \\ & 126 \\ & 127 \\ & 128 \\ & 129 \\ & 130 \\ & 131 \\ & 132 \\ & 133 \\ & 134 \\ & 135 \\ & 136 \\ & 137 \\ & 138 \end{aligned}$ | I/O <br> GND <br> NC <br> I/O (D1) <br> I/O ( $\overline{\mathrm{RCLK}}-\overline{\mathrm{BUSY}} / \mathrm{RDY})$ <br> I/O <br> NC <br> I/O <br> I/O (D0, DIN) <br> SGCK4 (DOUT,I/O) <br> CCLK <br> Vcc <br> TDO <br> GND <br> I/O (A0, $\overline{\mathrm{WS}}$ ) <br> PGCK4, (A1, I/O) <br> I/O <br> NC <br> I/O <br> $1 / \mathrm{O}(\overline{\mathrm{CS}}, \mathrm{A} 2)$ <br> I/O (A3) <br> NC <br> NC <br> GND <br> I/O <br> I/O <br> I/O (A4) | $\begin{aligned} & 139 \\ & 140 \\ & 141 \\ & 142 \\ & 143 \\ & 144 \\ & 145 \\ & 146 \\ & 147 \\ & 148 \\ & 149 \\ & 150 \\ & 151 \\ & 152 \\ & 153 \\ & 154 \\ & 155 \\ & 156 \\ & 157 \\ & 158 \\ & 159 \\ & 160 \\ & 161 \\ & 162 \\ & 163 \\ & 164 \end{aligned}$ | I/O (A5) I/O I/O I/O (A6) I/O (A7) GND VCC I/O (A8) I/O (A9) I/O I/O (A10) I/O (A10) I/O (A11) I/O I/O GND NC NC I/O (A12) I/O (A13) NC I/O I/O I/O (A14) SGCK1 (A15, I/O) VCC |

NC = NO CONNECT

FIGURE 2. Terminal connections - Continued.

| STANDARD <br> MICROCIRCUIT DRAWING DLA LAND AND MARITIME | $\begin{gathered} \mathrm{SIZE} \\ \mathbf{A} \end{gathered}$ |  | 5962-92252 |
| :---: | :---: | :---: | :---: |
|  |  | $\underset{\text { REVISION LEVEL }}{\text { F }}$ | SHEET 22 |

STANDARD
CIRCUIT DRAWING
DLA LAND AND MARITIME
COLUMBUS, OHIO 43218-3990
22

I/O BLOCK


FIGURE 3. Logic block diagram.

| STANDARD | SIZE |  | 5962-92252 |
| :---: | :---: | :---: | :---: |
| MICROCIRCUIT DRAWING | A |  |  |
| DLA LAND AND MARITIME |  |  |  |
| COLUMBUS, OHIO 43218-3990 |  | REVISION LEVEL | F |



FIGURE 3. Logic block diagram - Continued.

| STANDARD | SIZE |  | $\mathbf{5 9 6 2 - 9 2 2 5 2}$ |
| :---: | :---: | :---: | :---: |
| MICROCIRCUIT DRAWING | A |  |  |
| DLA LAND AND MARITIME |  |  |  |
| COLUMBUS, OHIO 43218-3990 |  | REVISION LEVEL | F |



FIGURE 3. Logic block diagram - Continued.

| STANDARD | SIZE |  |  |
| :---: | :---: | :---: | :---: |
| MICROCIRCUIT DRAWING |  |  |  |
| DLA LAND AND MARITIME | A |  | $5962-92252$ |
| COLUMBUS, OHIO 43218-3990 |  | REVISION LEVEL | SHEET |



FIGURE 3. Logic block diagram - Continued.

| STANDARD | SIZE |  | 5962-92252 |
| :---: | :---: | :---: | :---: |
| MICROCIRCUIT DRAWING <br> DLA LAND AND MARITIME <br> COLUMBUS, OHIO 43218-3990 | A | REVISION LEVEL |  |



FIGURE 4. Timing diagrams and switching characteristics.

| SIZE <br> A |  | $\mathbf{5 9 6 2 - 9 2 2 5 2}$ |  |
| :---: | :---: | :--- | :---: |
|  | REVISION LEVEL | SHEET |  |
|  | F | 27 |  |



FIGURE 4. Timing diagram and switching characteristics - Continued.
$\begin{array}{|c|c|l|c|}\hline \text { STANDARD } & \text { SIZE } & & 5962 \text {-92252 } \\$\cline { 2 - 4 } $\begin{array}{c}\text { MICROCIRCUIT DRAWING } \\ \text { DLA LAND AND MARITIME } \\ \text { COLUMBUS, OHIO 43218-3990 }\end{array} & \text { A } & \text { REVISION LEVEL } \\$\cline { 2 - 4 }\end{array}$)$

STANDARD
CIRCUIT DRAWING


NOTE: tTSHz is determined when the output shifts 10 percent (of the output voltage swing) from $V_{\text {OL }}$ level or $\mathrm{V}_{\mathrm{OH}}$ level. See figure 5, circuit A herein for circuit used. $\mathrm{t}_{T s o n}$ is measured at 0.5 V cc level with $\mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V}$ for three-state to active high, and $\mathrm{V}_{\mathbb{I}}=\mathrm{V}_{\mathrm{Cc}}$ for three-state to active low. See figure 5, circuit B herein for circuit used.

FIGURE 4. Timing diagram and switching characteristics - Continued.

| STANDARD <br> MICROCIRCUIT DRAWING | $\begin{gathered} \mathrm{SIZE} \\ \mathbf{A} \end{gathered}$ |  | 5962-92252 |
| :---: | :---: | :---: | :---: |
| DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 |  | REVISION LEVEL | SHEET 29 |



CIRCUIT A


CIRCUIT B

FIGURE 5. Load circuit.

| STANDARD MICROCIRCUIT DRAWING <br> DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 | $\begin{gathered} \text { SIZE } \\ \mathbf{A} \end{gathered}$ |  | 5962-92252 |
| :---: | :---: | :---: | :---: |
|  |  | $\underset{\text { REVISION LEVEL }}{\text { F }}$ | SHEET 30 |

## 4. VERIFICATION

4.1 Sampling and inspection. For device classes $Q$ and $V$, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class $M$, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.
4.2 Screening. For device classes $Q$ and $V$, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class $M$, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.

### 4.2.1 Additional criteria for device class M.

a. Delete the sequence specified as initial (pre-burn-in) electrical parameters through interim (post-burn-in) electrical parameters of method 5004 and substitute lines 1 through 6 of table IIA herein.
b. For device class $M$, the test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. For device class M , the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015.
(1) Static burn-in for device classes M, Q, and V (method 1015 of MIL-STD-883, test condition A).
(a) All inputs shall be connected to GND. Outputs may be open or connected to $5.0 \mathrm{~V}+0.5-0.0 \mathrm{~V}$ minimum. Resistors R1 are optional on both inputs and outputs, and required on outputs connected to $\mathrm{Vcc}+0.5-0.0 \mathrm{~V}$. $\mathrm{R} 1=220 \Omega$ to $47 \mathrm{k} \Omega$. For static II burn-in, reverse all input connections (i.e., Vss to $\mathrm{V}_{\mathrm{cc}}$ ).
(b) $\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}+0.5 \mathrm{~V}-0.0 \mathrm{~V}$ minimum.
(2) $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$, minimum.
c. Interim and final electrical test parameters shall be as specified in table IIA herein.

### 4.2.2 Additional criteria for device classes Q and V.

a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
b. Interim and final electrical test parameters shall be as specified in table IIA herein.
c. Additional screening for device class $V$ beyond the requirements of device class $Q$ shall be as specified in MIL-PRF-38535, appendix B.
4.3 Qualification inspection for device classes Q and V . Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).
4.4 Conformance inspection. Technology conformance inspection for classes $Q$ and $V$ shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections, and as specified herein. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

| SIZE <br> A |  | 5962-92252 |  |
| :---: | :---: | :--- | :---: |
|  | REVISION LEVEL <br> F | SHEET |  |
|  |  | 31 |  |

TABLE IIA. Electrical test requirements. $1 / \underline{2} / \underline{3} / \underline{4} / \underline{5} / \underline{6} / \underline{7} /$

| Line no. | Test requirements | Subgroups (in accordance with MIL-STD-883, TM 5005, table I) | Subgroups (in accordance with MIL-PRF-38535, table III) |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Device class M | Device class Q | Device class V |
| 1 | $\begin{aligned} & \hline \text { Interim electrical } \\ & \text { parameters (see 4.2) } \end{aligned}$ |  | 1, 7, 9 | 1, 7, 9 |
| 2 | Static burn-in (method 1015) | Required | Required | Required |
| 3 | Same as line 1 |  |  | $1^{*} \quad \Delta$ |
| 4 | Dynamic burn-in (method 1015) | $\begin{gathered} \text { Not } \\ \text { required } \end{gathered}$ | $\begin{gathered} \text { Not } \\ \text { required } \end{gathered}$ | Not required |
| 5 | Final electrical parameters | $\begin{gathered} 1^{*}, 2,3,7^{*}, 8 \mathrm{~A}, 8 \mathrm{~B}, 9, \\ 10,11 \end{gathered}$ | $\begin{gathered} 1^{*}, 2,3,7^{*}, 8 \mathrm{~A}, 8 \mathrm{~B}, 9, \\ 10,11 \end{gathered}$ | $\begin{gathered} 1^{*}, 2,3,7^{*}, 8 \mathrm{~A}, 8 \mathrm{~B}, 9, \\ 10,11 \end{gathered}$ |
| 6 | Group A test requirements | $\begin{gathered} \hline 1,2,3,4^{* *}, 7,8 \mathrm{~A}, 8 \mathrm{~B}, 9, \\ 10,11 \end{gathered}$ | $\begin{gathered} \hline 1,2,3,4^{* *}, 7,8 \mathrm{~A}, 8 \mathrm{~B}, 9, \\ 10,11 \end{gathered}$ | $\begin{gathered} \hline 1,2,3,4^{* *}, 7,8 \mathrm{~A}, 8 \mathrm{~B}, 9, \\ 10,11 \end{gathered}$ |
| 7 | Group C end-point electrical parameters | 2, 3, 7, 8A, 8B | 1,2, 3, 7, 8A, 8B | $\begin{gathered} 1,2,3,7,8 \mathrm{~A}, 8 \mathrm{~B}, 9, \\ 10,11 \quad \Delta \end{gathered}$ |
| 8 | Group D end-point electrical parameters | $\begin{gathered} 2,3, \\ 8 \mathrm{~A}, 8 \mathrm{~B} \end{gathered}$ | $\begin{gathered} 2,3, \\ 8 \mathrm{~A}, 8 \mathrm{~B} \end{gathered}$ | $\begin{gathered} 2,3, \\ 8 \mathrm{~A}, 8 \mathrm{~B} \end{gathered}$ |
| 9 | Group E end-point electrical parameters | 1, 7, 9 | 1, 7, 9 | 1, 7, 9 |

1/ Blank spaces indicate tests are not applicable.
$\underline{2}$ / Any or all subgroups may be combined when using high-speed testers.
3/ Subgroups 7 and 8 functional tests shall verify the truth table.
4/* indicates PDA applies to subgroup 1 and 7 .
5/ ** see 4.4.1e.
$\underline{6} / \Delta$ indicates delta limit (see table IIB) shall be required where specified, and the delta values shall be computed with reference to the previous interim electrical parameters (see line 1).
7/ See 4.4.1d.

TABLE IIB. Delta limits at $+25^{\circ} \mathrm{C}$.

| Parameter 1/ | Device types |
| :--- | :--- |
|  | All |
|  | $\pm 1 \mathrm{~mA}$ |
| IIL | $\pm 1 \mu \mathrm{~A}$ |
| IOL | $\pm 100 \mu \mathrm{~A}$ |

1/ The above parameter shall be recorded before and after the required burn-in and life tests to determine the delta $\Delta$.

| STANDARD | SIZE |  | 5962-92252 |
| :---: | :---: | :--- | :---: |
| MICROCIRCUIT DRAWING <br> DLA LAND AND MARITIME <br> COLUMBUS, OHIO 43218-3990 | A | REVISION LEVEL |  |
|  | FHEET | 32 |  |

STANDARD
ICROCIRCUIT DRAWING
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

### 4.4.1 Group A inspection.

a. Tests shall be as specified in table IIA herein.
b. Subgroups 5 and 6 of table I of method 5005 of MIL-STD- 883 shall be omitted.
c. For device class $M$, subgroups 7 and 8 tests shall be sufficient to verify the functionality of the device. For device classes $Q$ and $V$, subgroups 7 and 8 shall include verifying the functionality of the device.
d. O/V (latch-up) tests shall be measured only for initial qualification and after any design or process changes which may affect the performance of the device. For device class $M$, procedures and circuits shall be maintained under document revision level control by the manufacturer and shall be made available to the preparing activity or acquiring activity upon request. For device classes $Q$ and $V$, the procedures and circuits shall be under the control of the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the preparing activity or acquiring activity upon request. Testing shall be on all pins, on five devices with zero failures. Latch-up test shall be considered destructive. Information contained in JESD 78 may be used for reference.
e. Subgroup 4 (Cin/Cout measurements) shall be measured only for initial qualification and after any process or design changes which may affect input capacitance. Capacitance shall be measured between the designated terminal and GND at a frequency of 1 MHz . Sample size is 15 devices with no failures, and all input and output terminals tested.
4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table IIA herein.

### 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:

a. Test condition D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
b. $\quad T_{A}=+125^{\circ} \mathrm{C}$, minimum.
c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.
4.4.4 Group E inspection. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein).
a. End-point electrical parameters shall be as specified in table IIA herein.
b. For device classes $Q$ and $V$, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. For device class M, the devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535, appendix A for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table I at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, after exposure, to the subgroups specified in table IIA herein.
4.5 Delta measurements for device classes V . Delta measurements, as specified in table IIA, shall be made and recorded before and after the required burn-in screens and steady-state life tests to determine delta compliance. The electrical parameters to be measured, with associated delta limits are listed in table IIB. The device manufacturer may, at his option, either perform delta measurements or within 24 hours after burn-in perform final electrical parameter tests, subgroups 1, 7 , and 9.

| SIZE <br> A |  | $5962-92252$ |  |
| :---: | :---: | :---: | :---: |
|  | REVISION LEVEL <br> F | SHEET |  |
|  |  |  |  |

## 5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

## 6. NOTES

6.1 Intended use. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
6.1.1 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing.

### 6.1.2 Substitutability. Device class $Q$ devices will replace device class $M$ devices.

6.2 Configuration control of SMD's. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.
6.3 Record of users. Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and which SMD's are applicable to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108.
6.4 Comments. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0540.
6.5 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331, and as follows:

| Vcc | +5.0 V SUPPLY VOLTAGE |
| :---: | :---: |
| GND | GROUND |
| CCLK | CONFIGURATION CLOCK |
| DONE | DONE |
| PROGRAM | PROGRAM |
| RDY/BUSY | During peripheral parallel mode configuration, this pin indicates when the chip is ready for another byte of data to be written into it. After configuration is complete, this pin becomes a user programmed I/O pin. |
| RCLK | READ CLOCK |
| M0 | MODE 0 |
| M1 | MODE 1 |
| M2 | MODE 2 |
| TDO | TEST DATA OUTPUT |
| TDI | TEST DATA IN |
| TCK | TEST CLOCK |
| TMS | TEST MODE SELECT |
| HDC | HIGH DURING CONFIGURATION |
| LDC | LOW DURING CONFIGURATION |
| INIT | INIT |
| PGCK1-PGCK4 | PRIMARY GLOBAL INPUTS |
| CSO | CHIP SELECT, WRITE |
| CS1 | CHIP SELECT, WRITE |
| WS | WRITE STROBE |
| RS | READ STROBE |
| A0-A17 | ADDRESS |
| D0-D7 | DATA |
| DIN | DATA INPUT |
| DOUT | DATA OUTPUT |
| I/O | INPUT/OUTPUT |

$\begin{array}{c|c|c|c|}\hline \text { STANDARD } & \text { SIZE } & & \text { 5962-92252 } \\$\cline { 2 - 4 } $\begin{array}{c}\text { MICROCIRCUIT DRAWING } \\ \text { DLA LAND AND MARITIME } \\ \text { COLUMBUS, OHIO 43218-3990 }\end{array} & \text { A } & \text { REVISION LEVEL } \\$\cline { 2 - 4 }\end{array}$)$
6.5.1 Timing limits. The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

### 6.5.2 Waveforms.

| Waveform symbol | Input | Output |
| :---: | :---: | :---: |
|  | MUST BE VALID | WILL BE VALID |
| UM | CHANGE FROM HTOL | $\begin{aligned} & \text { WILL CHANGE } \\ & \text { FROM } \\ & \text { H TO L } \end{aligned}$ |
| 1/1/1 | CHANGE FROM LTO H | WILL CHANGE <br> FROM <br> LTOH |
| XXXXXXX | DON'T CARE ANY CHANGE PERMITTED | CHANGING STATE UNKNOWN |
| $\longrightarrow$ |  | HIGH <br> IMPEDANCE |


| STANDARD <br> MICROCIRCUIT DRAWING | $\begin{gathered} \hline \text { SIZE } \\ \mathbf{A} \end{gathered}$ |  | 5962-92252 |
| :---: | :---: | :---: | :---: |
| DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 |  | $\underset{\text { R }}{\text { REVISION LEVEL }}$ | SHEET 35 |

F

### 6.6 Additional operating data.

BUFFER SWITCHING CHARACTERISTICS

| Test | Symbol | Conditions $\begin{gathered} -55^{\circ} \mathrm{C} \leq \mathrm{Tc} \leq+125^{\circ} \mathrm{C} \\ 4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{Cc} \leq 5.5 \mathrm{~V} \end{gathered}$ <br> unless otherwise specified | Group A subgroups | Device type | Limits |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min | Max |  |
| TBUF driving a horizontal Longline (L.L.) I to L.L. while T is low (buffer active) | TıO1 | See note. | N/A | 01, 02 |  | 10 | ns |
|  |  |  |  | 03 |  | 7 |  |
| TBUF driving a horizontal Longline (L.L.) I going low to L.L. going from resistive pull up high to active low, (TBUF configured as open drain | T102 |  | N/A | 01, 02 |  | 10.5 | ns |
|  |  |  |  | 03 |  | 7.5 |  |
| T going low to L.L active and valid | Ton |  | N/A | 01, 02 |  | 12 | ns |
|  |  |  |  | 03 |  | 10 |  |
| T to L.L. inactive | Toff |  | N/A | 01, 02 |  | 3 | ns |
|  |  |  |  | 03 |  | 2 |  |
| T going high to L.L. (inactive) with single pull-up resistor | Tpus |  | N/A | 01, 02 |  | 26 | ns |
|  |  |  |  | 03 |  | 22 |  |
| T going high to L.L. (inactive) with pair of pull-up resistors | TPuF |  | N/A | 01, 02 |  | 12 | ns |
|  |  |  |  | 03 |  | 10 |  |

NOTE: These values are typical. They are not tested, characterized, or guaranteed but are derived from benchmark timing patterns.

### 6.7 Sources of supply.

6.7.1 Sources of supply for device classes Q and V. Sources of supply for device classes $Q$ and $V$ are listed in MIL-HDBK-103 and QML-38535. The vendors listed in MIL-HDBK-103 and QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DLA Land and Maritime-VA and have agreed to this drawing.
6.7.2 Approved sources of supply for device class M. Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DLA Land and Maritime-VA.
$\left.\begin{array}{|c|c|l|l|}\hline \text { STANDARD } \\ \text { MICROCIRCUIT DRAWING } \\ \text { DLA LAND AND MARITIME } \\ \text { COLUMBUS, OHIO 43218-3990 }\end{array} \quad \begin{array}{c}\text { SIZE } \\ \text { A }\end{array}\right)$

DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

DATE: 18-01-03
Approved sources of supply for SMD 5962-92252 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at https://landandmaritimeapps.dla.mil/programs/smcr/.

| Standard <br> microcircuit drawing <br> PIN 1// | Vendor <br> CAGE <br> number | Vendor <br> similar <br> PIN 2// |
| :--- | :---: | :---: |
| 5962-9225201MXA | $\underline{3} /$ | XC4005-10PG156B |
| 5962-9225201MYA | $\underline{3} /$ | XC4005-10CB164B |
| $5962-9225201$ MZA | $\underline{3} /$ | XC4005-10CB164B |
| $5962-9225202 M X A$ | $\underline{3} /$ | XC4005-6PG156B |
| $5962-9225202 M Y A$ | $\underline{3} /$ | XC4005-6CB164B |
| $5962-9225202 M Z A$ | $\underline{3} /$ | XC4005-6CB164B |
| $5962-9225203 M X A$ | $\underline{3} /$ | XC4005-5PG156B |
| $5962-9225203 M Y A$ | $\underline{3} /$ | XC4005-5CB164B |
| $5962-9225203 M Z A$ | $\underline{3} /$ | XC4005-5CB164B |

1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
2/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
3/ Not available from an approved source of supply. The last known sources are listed below.

| Vendor CAGE <br> number | Vendor name <br> and address |
| :--- | :--- |
|  |  |
|  | Xilinx, Incorporated |
|  | 2100 Logic Drive |
|  | San Jose, CA 95124 |

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.

