

DS106-1 (v1.0) Jul7 17, 2002

Spartan-IIE 1.8V FPGA Automotive IQ Product Family: Introduction and Ordering

Advance Product Specification

Introduction

The Spartan[™]-IIE 1.8V Field-Programmable Gate Array (FPGA) Automotive IQ product family gives users high performance, abundant logic resources, and a rich feature set. The five-member family offers densities ranging from 50,000 to 300,000 system gates, as shown in Table 1.

Spartan-IIE devices deliver more gates, I/Os, and features per Dollar/Euro than other FPGAs by combining advanced process technology with a streamlined architecture based on the proven Virtex[™]-E platform. Features include block RAM (to 64K bits), distributed RAM (to 98,304 bits), 19 selectable I/O standards, and four DLLs (Delay-Locked Loops). Fast, predictable interconnect means that successive design iterations continue to meet timing requirements.

The Spartan-IIE family is a superior alternative to mask-programmed ASICs. The FPGA avoids the initial cost, lengthy development cycles, and inherent risk of conventional ASICs. Also, FPGA programmability permits design upgrades in the field with no hardware replacement necessary (impossible with ASICs).

Features

- Guaranteed to meet full electrical specifications over
 T_{.1} = -40°C to +125°C
- Second generation ASIC replacement technology
 - Densities as high as 6,912 logic cells with up to 300,000 system gates
 - Streamlined features based on Virtex-E architecture
 - Unlimited in-system reprogrammability

- System level features
 - SelectRAM+™ hierarchical memory:
 - 16 bits/LUT distributed RAM to enable larger FIFOs, cache tag memory, and buffers
 - Configurable 4K-bit true dual-port block RAM to enable larger FIFOs, cache tag
 - Fast interfaces to external RAM such as SDRAM and ZBTRAM
 - Low-power segmented routing architecture
 - Full readback ability for verification/observability
 - Dedicated carry logic for high-speed arithmetic
 - Efficient multiplier support
 - Cascade chain for wide-input functions
 - Abundant registers/latches with enable, set, reset
 - Four dedicated DLLs for advanced clock control such as de-skewing clocks, clock generation (multiply/divide), and board level de-skew
 - Four primary low-skew global clock distribution nets
 - IEEE 1149.1 compatible boundary scan logic
- Versatile I/O and packaging
 - Family footprint compatibility in common packages
 - 19 high-performance interface standards, including LVDS and LVPECL — ideal for level shifting, interfacing, and translation (chip-to-chip, chip-to-memory, and chip-to-backplane)
 - Up to 120 differential I/O pairs that can be input, output, or bidirectional
 - Zero hold time simplifies system timing
- Fully supported by powerful Xilinx ISE development system
 - Fully automatic mapping, placement, and routing
 - Integrated with design entry and verification tools

Table 1: Spartan-IIE FPGA Family Members

Device	Logic Cells	Typical System Gate Range (Logic and RAM)	CLB Array (R x C)	Total CLBs	Maximum Available User I/O	Maximum Differential I/O Pairs	Distributed RAM Bits	Block RAM Bits
XC2S50E	1,728	23,000 - 50,000	16 x 24	384	182	84	24,576	32K
XC2S100E	2,700	37,000 - 100,000	20 x 30	600	202	86	38,400	40K
XC2S150E	3,888	52,000 - 150,000	24 x 36	864	263	114	55,296	48K
XC2S200E	5,292	71,000 - 200,000	28 x 42	1,176	289	120	75,264	56K
XC2S300E	6,912	93,000 - 300,000	32 x 48	1,536	329	120	98,304	64K

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.

All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

DC Specifications

Absolute Maximum Ratings⁽¹⁾

Symbol	Description	Min	Max	Units
V _{CCINT}	Supply voltage relative to GND ⁽²⁾	-0.5	2.0	V
V _{CCO}	Supply voltage relative to GND ⁽²⁾	-0.5	4.0	V
V _{REF}	Input reference voltage	-0.5	4.0	V
V _{IN}	Input voltage relative to GND ^(2,3)	-0.5	4.05	V
V _{TS}	Voltage applied to 3-state output	-0.5	4.0	V
T _{STG}	Storage temperature (ambient)	-65	+150	°C
T _J Junction temperature		-	+135	°C

Notes:

- Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.
- Power supplies may turn on in any order.
- V_{IN} should not exceed V_{CCO} by more than 3.6V over extended periods of time (e.g., longer than a day). Spartan-II I/Os are 5V Tolerant whenever the LVTTL, LVCMOS2, or PCI33_5 signal standard has been selected. With 5V Tolerant I/Os selected, the Maximum DC overshoot must be limited to either +5.5V or 10 mA, and undershoot must be limited to either -0.5V or 10 mA, whichever is easier to achieve. The Maximum AC conditions are as follows: The device pins may undershoot to -2.0V or overshoot to +7.0V, provided this over/undershoot lasts no more than 11 ns with a forcing current no greater than 100 mA.
- Without 5V Tolerant I/Os selected, the Maximum DC overshoot must be limited to either $V_{CCO} + 0.5V$ or 10 mA, and undershoot must be limited to -0.5V or 10 mA, whichever is easier to achieve. The Maximum AC conditions are as follows: The device pins may undershoot to -2.0V or overshoot to V_{CCO} + 2.0V, provided this over/undershoot lasts no more than 11 ns with a forcing current no greater than 100 mA.
- For soldering guidelines, see the Packaging Information on the Xilinx website: www.xilinx.com/partinfo/pkgs.htm

Recommended Operating Conditions

Symbol	Description	Min	Max	Units
T _J	Junction temperature	-40	125	°C
V _{CCINT}	Supply voltage relative to GND ^(1,2)	1.8 – 5%	1.8 + 5%	V
V _{CCO} Supply voltage relative to GND ^(2,3)		1.2	3.6	V
T _{IN} Input signal transition time ⁽⁴⁾		-	250	ns

Notes:

- Functional operation is guaranteed down to a minimum V_{CCINT} of 2.25V (Nominal V_{CCINT} 10%). For every 50 mV reduction in V_{CCINT} below 2.375V (nominal V_{CCINT} 5%), all delay parameters increase by 3%.
- Supply voltages may be applied in any order desired.
- Minimum and maximum values for V_{CCO} vary according to the I/O standard selected.
- Input and output measurement threshold is ~50% of V_{CCO}.

Spartan-IIE Product Availability

Table 2 shows the package and speed grades available for Spartan-IIE family devices. Table 3 shows the maximum

user I/Os available on the device and the number of user I/Os available for each device/package combination.

Table 2: Spartan-IIE Package and Speed Grade Availability

	Pins	144	208	256	456
	Туре	Plastic TQFP	Plastic PQFP	Fine Pitch BGA	Fine Pitch BGA
Device	Code	TQ144	PQ208	FT256	FG456
XC2S50E	-6	Q	Q	Q	-
XC2S100E	-6	Q	Q	Q	-
XC2S150E	-6	-	Q	Q	-
XC2S200E	-6	-	Q	Q	-
XC2S300E	-6	-	Q	-	Q

Notes:

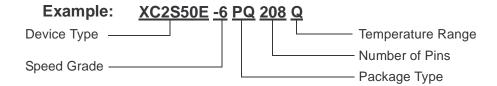

1. Q = Automotive IQ, $T_J = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$

Table 3: Spartan-IIE User I/O Chart

	Maximum User	Available User I/O According to Package Type				
Device	I/O	TQ144	PQ208	FT256	FG456	
XC2S50E	182	102	146	182	-	
XC2S100E	202	102	146	182	-	
XC2S150E	263	-	146	182	-	
XC2S200E	289	-	146	182	-	
XC2S300E	329	-	146	-	329	

Ordering Information

Device Ordering Options

Device
XC2S50E
XC2S100E
XC2S150E
XC2S200E
XC2S300E

Speed Grade			
-6	Standard Performance		

Package Type / Number of Pins				
TQ144	144-pin Plastic Thin QFP			
PQ208	208-pin Plastic QFP			
FT256	256-ball Fine Pitch BGA			
FG456	456-ball Fine Pitch BGA			

Temperature Range (T _J)			
Q = Automotive IQ	-40°C to +125°C		

Revision History

Version No.	Date	Description
1.0	07/17/02	Initial Xilinx release.

For more details about the Spartan-IIE Automotive IQ device, refer to specification:

DS106, Spartan-IIE 1.8V FPGA Automotive IQ Family