

2. Cyclone III LS Device Datasheet

CIII52002-1.4

This chapter describes the electric characteristics, switching characteristics, and I/O timing for Cyclone[®] III LS devices. A glossary is also included for your reference.

Electrical Characteristics

The following sections provide information about the absolute maximum ratings, recommended operating conditions, DC characteristics, and other specifications for Cyclone III LS devices.

Operating Conditions

When Cyclone III LS devices are implemented in a system, they are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of Cyclone III LS devices, you must consider the operating requirements in this chapter. Cyclone III LS devices are offered in commercial and industrial grades. Commercial devices are offered in –7 (fastest) and –8 speed grades. Industrial devices are offered only in –7 speed grade.

In this chapter, a prefix associated with the operating temperature range is attached to the speed grades—commercial with a "C" prefix; industrial with an "I" prefix. For example, commercial devices are described as C7 and C8 per respective speed grades. Industrial devices are described as I7.

Absolute Maximum Ratings

Absolute maximum ratings define the maximum operating conditions for Cyclone III LS devices. The values are based on experiments conducted with the device and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied at these conditions. Table 2–1 lists the absolute maximum ratings for Cyclone III LS devices.

Conditions beyond those listed in Table 2–1 may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device. All parameters representing voltages are measured with respect to ground.

Table 2–1. Cyclone III LS Devices Absolute Maximum Ratings (1) (Part 1 of 2)

Symbol	Parameter	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic	-0.5	1.8	V
V _{CCIO}	Supply voltage for output buffers	-0.5	3.9	V

© 2012 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

		•	•	
Symbol	Parameter	Min	Max	Unit
V_{CCA}	Supply (analog) voltage for PLL regulator	-0.5	3.75	V
V _{CCD_PLL}	Supply (digital) voltage for PLL	-0.5	1.8	V
V _{CCBAT} (2)	Battery back-up power supply for design security volatile key register	-0.5	3.75	V
VI	DC input voltage	-0.5	3.95	V
I _{OUT}	DC output current, per pin	-25	40	mA
V _{ESDHBM}	Electrostatic discharge voltage using the human body model	_	±2000	V
V _{ESDCDM}	Electrostatic discharge voltage using the charged device model	_	±500	V
T _{STG}	Storage temperature	-65	150	°C
T _J	Operating junction temperature	-40	125	°C

Table 2–1. Cyclone III LS Devices Absolute Maximum Ratings (1) (Part 2 of 2)

Notes to Table 2-1:

- (1) Supply voltage specifications apply to voltage readings taken at the device pins with respect to ground, not at the power supply.
- (2) V_{CCBAT} is tied to Power-on reset (POR). If the V_{CCBAT} is below 1.2 V, the device will not power up.

Maximum Allowed Overshoot or Undershoot Voltage

During transitions, input signals may overshoot to the voltage listed in Table 2–2 and undershoot to -2.0 V for a magnitude of currents less than 100 mA and for periods shorter than 20 ns.

Table 2–2 lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage over the lifetime of the device. The maximum allowed overshoot duration is specified as percentage of high-time over the lifetime of the device.

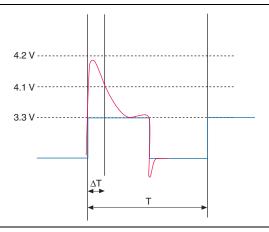

A DC signal is equivalent to 100% of the duty cycle. For example, a signal that overshoots to 4.2 V can only be at 4.2 V for 10.74% over the lifetime of the device; for a device lifetime of 10 years, this is equivalent to 10.74% of ten years, which is 12.89 months.

Table 2–2. Cyclone III LS Devices Maximum Allowed Overshoot During Transitions over a 10-Year Time Frame

Symbol	Parameter	Condition	Overshoot Duration as % of High Time	Unit
		$V_1 = 3.95 \text{ V}$	100	%
		V _I = 4.0 V	95.67	%
		V _I = 4.05 V	55.24	%
		V _I = 4.10 V	31.97	%
		V _I = 4.15 V	18.52	%
		V _I = 4.20 V	10.74	%
V	AC Input	V _I = 4.25 V	6.23	%
V_{i}	Voltage	V _I = 4.30 V	3.62	%
		V _I = 4.35 V	2.1	%
		V _I = 4.40 V	1.22	%
		V _I = 4.45 V	0.71	%
		V _I = 4.50 V	0.41	%
		V _I = 4.60 V	0.14	%
		V _I = 4.70 V	0.047	%

Figure 2–1 shows the methodology to determine the overshoot duration. In this example, overshoot voltage is shown in red and is present on the input pin of the Cyclone III LS device at over 4.1 V but below 4.2 V. From Table 2–1, for an overshoot of 4.1 V, the percentage of high time for the overshoot can be as high as 31.97% over a 10-year period. Percentage of high time is calculated as ([delta T]/T) \times 100. This 10-year period assumes the device is always turned on with 100% I/O toggle rate and 50% duty cycle signal. For lower I/O toggle rates and situations in which the device is in an idle state, lifetimes are increased.

Figure 2–1. Cyclone III LS Devices Overshoot Duration

July 2012 Altera Corporation

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Cyclone III LS devices.

The steady-state voltage and current values expected from Cyclone III LS devices are provided in Table 2–3. All supplies must be strictly monotonic without plateaus.

Table 2-3. Cyclone III LS Devices Recommended Operating Conditions (1), (2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CCINT} (3)	Supply voltage for internal logic	_	1.15	1.2	1.25	V
	Supply voltage for output buffers, 3.3-V operation	_	3.135	3.3	3.465	V
	Supply voltage for output buffers, 3.0-V operation	_	2.85	3.0	3.15	V
V _{CCIO} (3), (7)	Supply voltage for output buffers, 2.5-V operation	_	2.375	2.5	2.625	V
	Supply voltage for output buffers, 1.8-V operation	_	1.71	1.8	1.89	V
	Supply voltage for output buffers, 1.5-V operation	_	1.425	1.5	1.575	V
	Supply voltage for output buffers, 1.2-V operation	_	1.14	1.2	1.26	V
V _{CCA} (3)	Supply (analog) voltage for PLL regulator	_	2.375	2.5	2.625	V
V _{CCD_PLL} (3)	Supply (digital) voltage for PLL	-	1.15	1.2	1.25	V
V _{CCBAT} (4)	Battery back-up power supply for design security volatile key register	_	1.2	3.0	3.3	V
V _I	Input voltage	_	-0.5	_	3.6	V
V ₀	Output voltage	_	0	_	V _{CCIO}	V
т	Operating junction temperature	For commercial use	0	_	85	°C
T_J	Operating junction temperature	For industrial use	-40	_	100	°C
+	Power cumply ramptime	Standard POR (5)	50 μs	_	50 ms	
t _{RAMP}	Power supply ramptime	Fast POR (6)	50 μs	_	3 ms	_
I _{Diode}	Magnitude of DC current across PCI-clamp diode when enabled		_		10	mA

Notes to Table 2-3:

- (1) V_{CCIO} for all I/O banks must be powered up during device operation. All V_{CCA} pins must be powered to 2.5 V (even when you do not use phase locked-loops [PLLs]), and must be powered up and powered down at the same time.
- (2) $V_{\text{CCD_PLL}}$ must always be connected to V_{CCINT} through a decoupling capacitor and ferrite bead.
- (3) V_{CC} must rise monotonically.
- (4) V_{CCBAT} is tied to POR. If the V_{CCBAT} is below 1.2 V, the device will not power up.
- (5) POR time for Standard POR ranges from 50 to 200 ms. Each individual power supply must reach the recommended operating range within 50 ms
- (6) POR time for Fast POR ranges from 3 to 9 ms. Each individual power supply must reach the recommended operating range within 3 ms.
- (7) All input buffers are powered by the V_{CCIO} supply.

DC Characteristics

This section lists the I/O leakage current, pin capacitance, on-chip termination (OCT) tolerance, and bus hold specifications for Cyclone III LS devices.

Supply Current

Supply current is the current the device draws after the device is configured with no inputs or outputs toggling and no activity in the device. Use the Excel-based Early Power Estimator (EPE) to get the supply current estimates for your design because these currents vary largely with the resources you use. Table 2–4 lists the I/O pin leakage current for Cyclone III LS devices.

For more information about power estimation tools, refer to the *PowerPlay Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in the *Quartus II Handbook*.

Table 2-4. Cyclone III LS Devices I/O Pin Leakage Current (1), (2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _I	Input Pin Leakage Current	$V_I = V_{CCIOMAX}$ to 0 V	-10	_	10	μΑ
I _{OZ}	Tri-stated I/O Pin Leakage Current	$V_0 = V_{CCIOMAX}$ to 0	-10	_	10	μΑ

Notes to Table 2-4:

- (1) This value is specified for normal device operation. The value varies during device power-up. This applies for all V_{CCIO} settings (3.3, 3.0, 2.5, 1.8, 1.5, and 1.2 V).
- (2) The 10 μ A I/O leakage current limit is applicable when the internal clamping diode is off. A higher current can be observed when the diode is on.

Bus Hold

Bus hold retains the last valid logic state after the source driving it either enters the high impedance state or is removed. Each I/O pin has an option to enable bus hold in user mode. Bus hold is always disabled in configuration mode.

Table 2–5 lists the bus hold specifications for Cyclone III LS devices. Also listed are the input pin capacitances and OCT tolerance specifications.

Table 2–5. Cyclone III LS Devices Bus Hold Parameters (1)

		V _{CCIO} (V)												
Parameter	Condition	1.2		1.5		1.8		2.5		3.0		3.3		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold low, sustaining current	V _{IN} > V _{IL} (maximum)	8	_	12	_	30	_	50	_	70	_	70	_	μА
Bus-hold high, sustaining current	V _{IN} < V _{IL} (minimum)	-8	_	-12	_	-30	_	-50	_	-70	_	-70	_	μА
Bus-hold low, overdrive current	0 V < V _{IN} < V _{CCIO}	_	125	_	175	_	200	_	300	_	500	_	500	μА

July 2012 Altera Corporation Cyclone III Device Handbook
Volume 2

		V _{ccio} (V)												
Parameter	Condition	1	.2	1	.5	1	.8	2	2.5	3	3.0	3	.3	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus-hold high, overdrive current	0 V < V _{IN} < V _{CCIO}	_	-125	_	-175	_	-200	_	-300	_	-500		-500	μА
Bus-hold trip point	_	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2.0	0.8	2.0	V

Table 2–5. Cyclone III LS Devices Bus Hold Parameters (1)

Note to Table 2-5:

(1) Bus-hold trip points are based on calculated input voltages from the JEDEC standard.

OCT Specifications

Table 2–6 lists the variation of OCT without calibration across process, temperature, and voltage (PVT).

Table 2-6. Cyclone III LS Devices Series OCT without Calibration Specifications

Description	v 00	Resistance Toler	Ilmit	
	V _{CCIO} (V)	Commercial Max	Industrial Max	Unit
	3.0	±30	±40	%
0 · 00 - ···	2.5	±30	±40	%
Series OCT without calibration	1.8	±40	±50	%
Ganstation	1.5	±50	±50	%
	1.2	±50	±50	%

OCT calibration is automatically performed at device power-up for OCT enabled ${\rm I/Os.}$

Table 2–7 lists the OCT calibration accuracy at device power-up.

Table 2–7. Cyclone III LS Devices Series OCT with Calibration at Device Power-Up Specifications

Description	v 00	Calibra	ation Accuracy	IIn:4
Description	V _{CCIO} (V)	Commercial Max	Industrial Max	- Unit
	3.0	±10	±10	%
On the Transfer the could	2.5	±10	±10	%
Series Termination with power-up calibration	1.8	±10	±10	%
power up canonation	1.5	±10	±10	%
	1.2	±10	±10	%

OCT resistance may vary with the variation of temperature and voltage after power-up calibration. Use Table 2–8 and Equation 2–1 to determine the final OCT resistance considering the variations after power-up calibration.

Table 2–8 lists the percentage change of the OCT resistance with voltage and temperature.

Table 2–8. Cyclone III LS Devices OCT Variation After Calibration at Device Power-Up (1)

Nominal Voltage	dR/dT (%/°C)	dR/dV (%/mV)
3.0	0.262	-0.026
2.5	0.234	-0.039
1.8	0.219	-0.086
1.5	0.199	-0.136
1.2	0.161	-0.288

Note to Table 2-8:

(1) Use this table to calculate the final OCT resistance with the variation of temperature and voltage.

Equation 2-1. (1), (2), (3), (4), (5), (6)

$$\begin{split} \Delta R_V &= (V_2 - V_1) \times 1000 \times dR/dV ------ (7) \\ \Delta R_T &= (T_2 - T_1) \times dR/dT ------ (8) \\ \text{For } \Delta R_x &< 0; \ MF_x = 1/\left(|\Delta R_x|/100 + 1\right) ------- (9) \\ \text{For } \Delta R_x > 0; \ MF_x = \Delta R_x/100 + 1 ------- (10) \\ MF &= MF_V \times MF_T ------- (11) \\ R_{final} &= R_{initial} \times MF ------ (12) \end{split}$$

Notes to Equation 2-1:

- (1) T₂ is the final temperature.
- (2) T_1 is the initial temperature.
- (3) MF is multiplication factor.
- (4) R_{final} is final resistance.
- (5) R_{initial} is initial resistance.
- (6) Subscript \times refers to both $_{V}$ and $_{T}$.
- (7) ΔR_V is variation of resistance with voltage.
- (8) ΔR_T is variation of resistance with temperature.
- (9) dR/dT is the percentage change of resistance with temperature.
- (10) dR/dV is the percentage change of resistance with voltage.
- (11) V_2 is final voltage.
- (12) V_1 is the initial voltage.

Example 2–1 shows you how to calculate the change of 50 Ω I/O impedance from 25°C at 3.0 V to 85°C at 3.15 V.

Example 2-1.

 $\Delta R_V = (3.15 - 3) \times 1000 \times -0.026 = -3.83$

 $\Delta R_T = (85 - 25) \times 0.262 = 15.72$

Because ΔR_V is negative,

 $MF_V = 1 / (3.83/100 + 1) = 0.963$

Because ΔR_T is positive,

 $MF_T = 15.72/100 + 1 = 1.157$

 $MF = 0.963 \times 1.157 = 1.114$

 $R_{final} = 50 \times 1.114 = 55.71~\Omega$

Pin Capacitance

Table 2–9 lists the pin capacitance for Cyclone III LS devices.

Table 2-9. Cyclone III LS Devices Pin Capacitance

Symbol	Parameter	Typical – QFP	Typical – FBGA	Unit
C _{IOTB}	Input capacitance on top/bottom I/O pins	7	6	pF
C _{IOLR}	Input capacitance on left/right I/O pins	7	5	pF
C _{LVDSLR}	Input capacitance on left/right I/O pins with true LVDS output	8	7	pF
C _{VREFLR}	Input capacitance on left/right dual-purpose \ensuremath{VREF} pin when used as V_{REF} or user I/O pin	21	21	pF
C _{VREFTB}	Input capacitance on top/bottom dual-purpose $VREF$ pin when used as V_{REF} or user I/O pin	23	23	pF
C _{CLKTB}	Input capacitance on top/bottom dedicated clock input pins	7	6	pF
C _{CLKLR}	Input capacitance on left/right dedicated clock input pins	6	5	pF

Note to Table 2-9:

⁽¹⁾ When you use the VREF pin as a regular input or output, you can expect a reduced performance of toggle rate and t_{CO} due to higher pin capacitance.

Internal Weak Pull-Up and Weak Pull-Down Resistor

Table 2–10 lists the weak pull-up and pull-down resistor values for Cyclone III LS devices.

Table 2–10. Cyclone III LS Devices Internal Weak Pull-Up Weak and Pull-Down Resistor (1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (2), (3)	7	25	41	kΩ
	Value of I/O pin pull-up resistor before	$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (2), (3)	7	28	47	kΩ
D	and during configuration, as well as	$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (2), (3)	8	35	61	kΩ
R_ _{PU}	user mode if the programmable pull-up resistor option is enabled	$V_{CCIO} = 1.8 \text{ V} \pm 5\%$ (2), (3)	10	57	108	kΩ
		$V_{CCIO} = 1.5 \text{ V} \pm 5\%$ (2), (3)	13	82	163	kΩ
		V _{CCIO} = 1.2 V ± 5% (2), (3)	19	143	351	kΩ
		$V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (4)	6	19	30	kΩ
	Velocities all desire maister	$V_{CCIO} = 3.0 \text{ V} \pm 5\%$ ⁽⁴⁾	6	22	36	kΩ
R_PD	Value of I/O pin pull-down resistor before and during configuration	$V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (4)	6	25	43	kΩ
	booto and daring configuration	V _{CCIO} = 1.8 V ± 5% ⁽⁴⁾	7	35	71	kΩ
		V _{CCIO} = 1.5 V ± 5% ⁽⁴⁾	8	50	112	kΩ

Notes to Table 2-10:

- (1) All I/O pins have an option to enable weak pull-up except the configuration, test, and JTAG pins. The weak pull-down feature is only available for JTAG TCK.
- (2) Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} .
- (3) R $_{PU} = (V_{CCIO} V_I)/I_{R_PU}$ Minimum condition: -40°C ; $V_{CCIO} = V_{CC} + 5\%$, $V_I = V_{CC} + 5\% 50$ mV; Typical condition: 25°C ; $V_{CCIO} = V_{CC}$, $V_I = 0$ V; Maximum condition: 125°C ; $V_{CCIO} = V_{CC} 5\%$, $V_I = 0$ V; in which V_I refers to the input voltage at the I/O pin.

 $\begin{array}{ll} \text{(4)} & R_{\text{PD}} = V_{\text{I}}/I_{R_{\text{PD}}} \\ & \text{Minimum condition: } -40^{\circ}\text{C; } V_{\text{CCIO}} = V_{\text{CC}} + 5\% \text{, } V_{\text{I}} = 50 \text{ mV;} \\ & \text{Typical condition: } 25^{\circ}\text{C; } V_{\text{CCIO}} = V_{\text{CC}}, V_{\text{I}} = V_{\text{CC}} - 5\%; \\ & \text{Maximum condition: } 125^{\circ}\text{C; } V_{\text{CCIO}} = V_{\text{CC}} - 5\%, V_{\text{I}} = V_{\text{CC}} - 5\%; \text{ in which } V_{\text{I}} \text{ refers to the input voltage at the I/O pin.} \\ \end{array}$

Hot Socketing

Table 2–11 lists the hot-socketing specifications for Cyclone III LS devices.

Table 2–11. Cyclone III Devices LS Hot-Socketing Specifications

Symbol	Parameter	Maximum
I _{IOPIN(DC)}	DC current per I/O pin	300 μΑ
I _{IOPIN(AC)}	AC current per I/O pin	8 mA ⁽¹⁾

Note to Table 2-11:

(1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, |IIOPIN| = C dv/dt, in which C is I/O pin capacitance and dv/dt is the slew rate.

July 2012 Altera Corporation

Schmitt Trigger Input

Cyclone III LS devices support Schmitt trigger input on TDI, TMS, TCK, nSTATUS, nCONFIG, nCE, CONF_DONE, and DCLK pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signals with a slow edge rate. Table 2–12 lists the hysteresis specifications across supported $V_{\rm CCIO}$ range for Schmitt trigger inputs in Cyclone III LS devices.

Table 2-12. Hysteresis Specifications for Schmitt Trigger Input in Cyclone III LS Devices

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
		$V_{CCIO} = 3.3 \text{ V}$	200	_	_	mV
V	Hysteresis for Schmitt trigger	V _{CCIO} = 2.5 V	200	_	_	mV
V _{SCHMITT}	input	V _{CCIO} = 1.8 V	140	_	_	mV
		V _{CCIO} = 1.5 V	110			mV

I/O Standard Specifications

The following tables list input voltage sensitivities (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}) for various I/O standards supported by Cyclone III LS devices.

Table 2–13 through Table 2–18 provide Cyclone III LS devices I/O standard specifications.

Table 2–13. Cyclone III LS Devices Single-Ended I/O Standard Specifications (1)

I/O Stondord	,	V _{CCIO} (V)	VII	_L (V)	'	/ _{IH} (V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
I/O Standard	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(mA)	(mÅ)
3.3-V LVTTL ⁽²⁾	3.135	3.3	3.465	_	8.0	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS (2)	3.135	3.3	3.465	_	0.8	1.7	3.6	0.2	V _{CCIO} - 0.2	2	-2
3.0-V LVTTL (2)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.45	2.4	4	-4
3.0-V LVCMOS (2)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCIO} + 0.3	0.2	V _{CCIO} - 0.2	0.1	-0.1
2.5-V LVTTL and LVCMOS ⁽²⁾	2.375	2.5	2.625	-0.3	0.7	1.7	3.6	0.4	2.0	1	-1
1.8-V LVTTL and LVCMOS	1.71	1.8	1.89	-0.3	0.35 * V _{CCIO}	0.65 * V _{CCIO}	2.25	0.45	V _{CCIO} – 0.45	2	-2
1.5-V LVCMOS	1.425	1.5	1.575	-0.3	0.35 * V _{CCIO}	0.65 * V _{CCIO}	V _{CCIO} + 0.3	0.25 * V _{CCIO}	0.75 * V _{CCIO}	2	-2
1.2-V LVCMOS	1.14	1.2	1.26	-0.3	0.35 * V _{CCIO}	0.65 * V _{CCIO}	V _{CCIO} + 0.3	0.25 * V _{CCIO}	0.75 * V _{CCIO}	2	-2
PCI	2.85	3.0	3.15		0.30* V _{CCIO}	0.50* V _{CCIO}	V _{CCIO} + 0.3	0.1 * V _{CCIO}	0.9 * V _{CCIO}	1.5	-0.5
PCI-X	2.85	3.0	3.15	_	0.35* V _{CCIO}	0.50* V _{CCIO}	V _{CCIO} + 0.3	0.1 * V _{CCIO}	0.9 * V _{CCIO}	1.5	-0.5

Notes to Table 2-13:

⁽¹⁾ AC load CL = 10 pF.

⁽²⁾ For more information about interfacing Cyclone III LS devices with 3.3-, 3.0-, and 2.5-V LVTTL/LVCMOS I/O standards, refer to AN 447: Interfacing Cyclone III and Cyclone iV Devices with 3.3/3.0/2.5-V LVTTL and LVCMOS I/O Systems.

Table 2–14. Cyclone III LS Devices Single-Ended SSTL and HSTL I/O Reference Voltage Specifications (4)

I/O	,	V _{CCIO} (V)		V _{REF} (V)			V _{TT} (V) ⁽³⁾	
Standard	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max
SSTL-2 Class I, II	2.375	2.5	2.625	1.19	1.25	1.31	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04
SSTL-18 Class I, II	1.7	1.8	1.9	0.833	0.9	0.969	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	0.85	0.9	0.95
HSTL-15 Class I, II	1.425	1.5	1.575	0.71	0.75	0.79	0.71	0.75	0.79
HSTL-12	1.14	1.2	1.26	0.48 * V _{CCIO}	0.5 * V _{CCIO} (1)	0.52 * V _{CCIO} (1)	_	0.5 *	
Class I, II	1.14	1.2	1.20	0.47 * V _{CCIO}	0.5 * V _{CCIO} (2)	0.53 * V _{CCIO} (2)		V _{CCIO}	

Notes to Table 2-14:

- (1) The value shown refers to the DC input reference voltage, $V_{\text{REF(DC)}}$.
- (2) The value shown refers to the AC input reference voltage, $V_{REF(AC)}$.
- (3) V_{TT} of the transmitting device must track V_{REF} of the receiving device.
- (4) For an explanation of the terms used in Table 2–14, refer to "Glossary" on page 2–26.

Table 2–15. Cyclone III LS Devices Single-Ended SSTL and HSTL I/O Standards Signal Specifications

I/O	V _{IL(D}	_{IC)} (V)	VII	_{H(DC)} (V)	V _{IL(}	_{4C)} (V)	V _{IH}	_{I(AC)} (V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
Standard	Min	Max	Min	Max	Min	Max	Min	Max	Max	Min	(mA)	(mÅ)
SSTL-2 Class I		V _{REF} – 0.18	V _{REF} + 0.18	_	_	V _{REF} – 0.35	V _{REF} + 0.35	_	V _{TT} – 0.57	V _{TT} + 0.57	8.1	-8.1
SSTL-2 Class II		V _{REF} – 0.18	V _{REF} + 0.18	_		V _{REF} – 0.35	V _{REF} + 0.35	_	V _Π – 0.76	V _{TT} + 0.76	16.4	-16.4
SSTL-18 Class I	_	V _{REF} – 0.125	V _{REF} + 0.125	_	_	V _{REF} – 0.25	V _{REF} + 0.25	_	V _{TT} – 0.475	V _{TT} + 0.475	6.7	-6.7
SSTL-18 Class II		V _{REF} – 0.125	V _{REF} + 0.125	_	_	V _{REF} – 0.25	V _{REF} + 0.25	_	0.28	V _{CCIO} – 0.28	13.4	-13.4
HSTL-18 Class I		V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} – 0.4	8	-8
HSTL-18 Class II		V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} – 0.4	16	-16
HSTL-15 Class I		V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} – 0.4	8	-8
HSTL-15 Class II		V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCIO} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.24	0.25 × V _{CCIO}	0.75 × V _{CCIO}	8	-8
HSTL-12 Class II	-0.15	V _{REF} – 0.08	V _{REF} + 0.08	V _{CCIO} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCIO} + 0.24	0.25 × V _{CCIO}	0.75 × V _{CCIO}	14	-14

July 2012 Altera Corporation Cyclone III Device Handbook Volume 2

For more information about receiver input and transmitter output waveforms, and for other differential I/O standards, refer to the *High-Speed Differential Interfaces in Cyclone III Devices* chapter.

Table 2–16. Cyclone III LS Devices Differential SSTL I/O Standard Specifications (1)

I/O Standard	V	_{CCIO} (V	")	V _{Swi}	ng(DC) V)	V _{X(A}	V _{Swir}	ng(AC) /)	V _{OX(AC)} (V)				
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	Min	Тур	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.36	V _{CCIO}	V _{CCIO} /2 - 0.2	_	V _{CC10} /2 + 0.2	0.7	V _{CCI}	V _{CCIO} /2 - 0.125	_	V _{CCIO} /2 + 0.125
SSTL-18 Class I, II	1.7	1.8	1.90	0.25	V _{CCIO}	V _{CCIO} /2 - 0.175	_	V _{CCIO} /2 + 0.175	0.5	V _{CCI}	V _{CCIO} /2 - 0.125	_	V _{CCIO} /2 + 0.125

Note to Table 2-16:

Table 2–17. Cyclone III LS Devices Differential HSTL I/O Standard Specifications (1)

I/O Standard	V	V _{CCIO} (V)			_{DC)} (V)	V _{X(AC)} (V)			V	CM(DC)	(V)	V _{DIF(AC)} (V)	
i/O Stanuaru	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Min	Max
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.85	_	0.95	0.85	_	0.95	0.4	_
HSTL-15 Class I, II	1.425	1.5	1.575	0.2		0.71	_	0.79	0.71	_	0.79	0.4	_
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO}	0.48 * V _{CCIO}	_	0.52 * V _{CCIO}	0.48 * V _{CCIO}	_	0.52 * V _{CCIO}	0.3	0.48 * V _{CCIO}

Note to Table 2-17:

Table 2–18. Differential I/O Standard Specifications (1) (Part 1 of 2)

I/O	'	/ _{CCIO} (V	7)	V _{ID} (mV)		V _{ICM} (V)		Vo	_D (mV)	(2)	V	os (V) ((2)
Standard	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
LVDECL						0	$D_{MAX} \leq 500 \; Mbps$	1.85						
LVPECL (Row I/Os) (3)	2.375	2.5	2.625	100	_	0.5	$\begin{array}{l} 500 \; Mbps \leq \; D_{MAX} \\ \leq 700 \; Mbps \end{array}$	1.85	_	_	_	_	_	_
1,00)						1	D _{MAX} > 700 Mbps	1.6						
LVDEOL						0	$D_{MAX} \leq 500 \; Mbps$	1.85						
LVPECL (Column I/Os) (3)	2.375	2.5	2.625	100	_	0.5	$\begin{array}{l} 500 \; Mbps \leq D_{MAX} \\ \leq 700 \; Mbps \end{array}$	1.85	_	_	_	_	_	_
., 00)						1	D _{MAX} > 700 Mbps	1.6						
LVDC						0	$D_{MAX} \leq 500 \; Mbps$	1.85						
LVDS (Row I/Os)	2.375	2.5	2.625	100	_	0.5	$\begin{array}{l} 500 \; Mbps \leq D_{MAX} \\ \leq 700 \; Mbps \end{array}$	1.85	247	_	600	1.125	1.25	1.375
., 55,						1	$D_{MAX} > 700 \text{ Mbps}$	1.6						

⁽¹⁾ Differential SSTL requires a V_{REF} input.

⁽¹⁾ Differential HSTL requires a V_{REF} input.

Table 2–18. Differential I/O Standard Specifications (1) (Part 2 of 2)

I/O	1	/ _{CCIO} (V	7)	V _{ID} ((mV)		V _{ICM} (V)		Vo	_D (mV)	(2)	V	os (V)	(2)
Standard	Min	Тур	Max	Min	Max	Min	Condition	Max	Min	Тур	Max	Min	Тур	Max
LVDS						0	$D_{MAX} \leq \ 500 \ Mbps$	1.85						
(Column I/Os)	2.375	2.5	2.625	100	_	0.5	$\begin{array}{l} 500 \text{ Mbps} \leq D_{\text{MAX}} \\ \leq 700 \text{ Mbps} \end{array}$	1.85	247	_	600	1.125	1.25	1.35
1,00)						1	D _{MAX} > 700 Mbps	1.6						
BLVDS (Row I/Os) (4)	2.375	2.5	2.625	100	_	_	_	_	_	_	_	_	_	_
BLVDS (Column I/Os) (4)	2.375	2.5	2.625	100	_	_	_	_	_	_	_	_	_	_
mini-LVDS (Row I/Os) (5)	2.375	2.5	2.625	_	_	_	_	_	300	_	600	1.0	1.2	1.4
mini-LVDS (Column I/Os) (5)	2.375	2.5	2.625	_	_	_	_	_	300	_	600	1.0	1.2	1.4
RSDS (Row I/Os) (5)	2.375	2.5	2.625	_	_	_	_	_	100	200	600	0.5	1.2	1.5
RSDS (Column I/Os) (5)	2.375	2.5	2.625	_	_	_	_	_	100	200	600	0.5	1.2	1.5
PPDS (Row I/Os) (5)	2.375	2.5	2.625	_	_	_	_	_	100	200	600	0.5	1.2	1.4
PPDS (Column I/Os) (5)	2.375	2.5	2.625	_	_	_	_	_	100	200	600	0.5	1.2	1.4

Notes to Table 2-18:

- (1) For an explanation of the terms used in Table 2–18, refer to "Transmitter Output Waveform" in "Glossary" on page 2–26.
- (2) R_L range: $90 \le R_L \le 110 \Omega$.
- (3) The LVPECL input standard is only supported at clock input. The output standard is not supported.
- (4) There is no fixed V_{ICM} , V_{OD} , and V_{OS} specification for BLVDS. They are dependent on the system topology.
- (5) Mini-LVDS, RSDS, and PPDS standards are only supported at output pins of Cyclone III LS devices.

Power Consumption

Use the following methods to estimate power for your design:

- The Excel-based EPE
- The Quartus II[®] PowerPlay power analyzer feature

July 2012 Altera Corporation Cyclone III Device Handbook Use the interactive Excel-based EPE before designing your device to get a magnitude estimate of the device power. The Quartus II PowerPlay power analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay power analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities which, combined with detailed circuit models, can yield very accurate power estimates.

For more information about power estimation tools, refer to the *Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*.

Switching Characteristics

This section describes performance characteristics of the core and periphery blocks for Cyclone III LS devices.

Core Performance Specifications

Table 2–19 through Table 2–25 describe the core performance specifications for Cyclone III LS devices.

Clock Tree Specifications

Table 2–19 lists the clock tree specifications for Cyclone III LS devices.

Table 2–19. Cyclone III LS Devices Clock Tree Performance

Dovine		Performance		II-i4
Device	C 7	C8	17	Unit
EP3CLS70	437.5	402	437.5	MHz
EP3CLS100	437.5	402	437.5	MHz
EP3CLS150	437.5	402	437.5	MHz
EP3CLS200	437.5	402	437.5	MHz

PLL Specifications

Table 2–20 lists the PLL specifications for Cyclone III LS devices when operating in the commercial junction temperature range (0°C to 85°C) and the industrial junction temperature range (-40°C to 100°C). For more information about the PLL block, refer to "PLL Block" in "Glossary" on page 2–26.

Table 2–20. Cyclone III LS Devices PLL Specifications (4) (Part 1 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
f _{IN} ⁽¹⁾	Input clock frequency	5	_	450	MHz
f _{INPFD}	PFD input frequency	5	_	325	MHz
f _{VCO} (6)	PLL internal VCO operating range	600	_	1300	MHz
f _{INDUTY}	Input clock duty cycle	40	_	60	%
+ (5)	Input clock cycle-to-cycle jitter for $F_{INPFD} \ge 100 \text{ MHz}$	_	_	0.15	UI
t _{INJITTER_CCJ} (5)	Input clock cycle-to-cycle jitter for F _{INPFD} < 100 MHz	_	_	±750	ps

Table 2–20. Cyclone III LS Devices PLL Specifications (4) (Part 2 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
f _{OUT_EXT} (external clock output) ⁽¹⁾	PLL output frequency	_	_	450	MHz
f (to alobal aloak)	PLL output frequency (-7 speed grade)	_	_	450	MHz
f _{OUT} (to global clock)	PLL output frequency (-8 speed grade)	_	_	402.5	MHz
t _{оитриту}	Duty cycle for external clock output (when set to 50%)	45	50	55	%
t _{lock}	Time required to lock from end of device configuration	_	_	1	ms
t _{DLOCK}	Time required to lock dynamically (after switchover, reconfiguring any non-post-scale counters/delays or areset is deasserted)	_	_	1	ms
+(3)	Dedicated clock output period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
toutjitter_period_dedclk (3)	F _{OUT} < 100 MHz	_	_	30	mUI
toutjitter_ccj_dedclk (3)	Dedicated clock output cycle-to-cycle jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	_	30	mUI
+ (3)	Regular I/O period jitter F _{OUT} ≥ 100 MHz	_	_	650	ps
toutjitter_period_io ⁽³⁾	F _{OUT} < 100 MHz	_	_	75	mUI
+ (3)	Regular I/O cycle-to-cycle jitter F _{OUT} ≥ 100 MHz	_	_	650	ps
t _{outjitter_ccj_io} (3)	F _{OUT} < 100 MHz	_	_	75	mUI
t _{PLL_PSERR}	Accuracy of PLL phase shift	_	_	±50	ps
t _{ARESET}	Minimum pulse width on areset signal.	10	_	_	ns
tconfigpll	Time required to reconfigure scan chains for PLLs	_	3.5 ⁽²⁾	_	scanclk cycles
f _{SCANCLK}	scanclk frequency	_	_	100	MHz

Notes to Table 2-20:

- (1) This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (2) With 100-MHz scanclk frequency.
- (3) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL, when an input jitter of 30 ps is applied.
- (4) $V_{CCD\ PLL}$ must be connected to V_{CCINT} through the decoupling capacitor and ferrite bead.
- (5) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source, which is less than 200 ps.
- (6) The V_{CO} frequency reported by the Quartus II software in the PLL summary section of the compilation report takes into consideration the V_{CO} post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VCO} specification.

July 2012 Altera Corporation Cyclone III Device Handbook Volume 2

Embedded Multiplier Specifications

Table 2–21 lists the embedded multiplier specifications for Cyclone III LS devices.

Table 2-21. Cyclone III LS Devices Embedded Multiplier Specifications

Mode	Resources Used	EP3CLS70, I EP3CLS150, a Perfor	Unit	
	Number of Multipliers	C7 and I7	C8	
9 × 9-bit multiplier	1	300	260	MHz
18 × 18-bit multiplier	1	250	200	MHz

Memory Block Specifications

Table 2–22 lists the M9K memory block and logic element (LE) specifications for Cyclone III LS devices.

Table 2-22. Cyclone III LS Devices Memory Block Performance Specifications

Memory	Mode	Resources Used		EP3CLS70, E EP3CLS150, an Perforn	Unit	
		LEs	M9K Memory	C7 and I7	C8	
	FIFO 256 × 36	47	1	274	238	MHz
M9K Block	Single-port 256 × 36	0	1	274	238	MHz
INISK DIOCK	Simple dual-port 256 × 36 CLK	0	1	274	238	MHz
	True dual port 512 × 18 single CLK	0	1	274	238	MHz

Configuration and JTAG Specifications

Table 2–23 lists the configuration mode specifications for Cyclone III LS devices.

Table 2-23. Cyclone III LS Devices Configuration Mode Specifications

Programming Mode	DCLK f _{max}	Unit
Passive Serial (PS)	133	MHz
Fast Passive Parallel (FPP)	100	MHz

Table 2–24 lists the active configuration mode specifications for Cyclone III LS devices.

Table 2-24. Cyclone III LS Devices Active Configuration Mode Specifications

Programming Mode	DCLK Range	Unit
Active Serial (AS)	20 to 40	MHz

Table 2–25 lists the JTAG timing parameters and values for Cyclone III LS devices.

Table 2–25. Cyclone III LS Devices JTAG Timing Parameters (1)

Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	40	_	ns
t _{JCH}	TCK clock high time	20	_	ns
t _{JCL}	TCK clock low time	20	_	ns
t _{JPSU_TDI}	JTAG port setup time for TDI	2		ns
t _{JPSU_TMS}	JTAG port setup time for TMS	3	_	ns
t _{JPH}	JTAG port hold time	10		ns
t _{JPCO}	JTAG port clock to output (2)	_	16	ns
t _{JPZX}	JTAG port high impedance to valid output (2)	_	15	ns
t _{JPXZ}	JTAG port valid output to high impedance (2)	_	15	ns
t _{JSSU}	Capture register setup time	5		ns
t _{JSH}	Capture register hold time	10		ns
t _{JSCO}	Update register clock to output	_	25	ns
t _{JSZX}	Update register high impedance to valid output	_	25	ns
t _{JSXZ}	Update register valid output to high impedance	_	25	ns

Notes to Table 2-25:

- (1) For more information, refer to "JTAG Waveform" in "Glossary" on page 2–26.
- (2) The specification shown is for the 3.3-, 3.0-, and 2.5-V LVTTL/LVCMOS operation of the JTAG pins. For the 1.8-V LVTTL/LVCMOS and the 1.5-V LVCMOS, the JTAG port clock to output time is 16 ns.

Periphery Performance

This section describes periphery performance, including high-speed I/O, external memory interface, and IOE programmable delay.

I/O performance supports several systems interfacing, for example, the high-speed I/O interface, external memory interface, and PCI/PCI-X bus interface. I/O using SSTL-18 Class I termination standard can achieve up to the stated DDR2 SDRAM interfacing speed with typical DDR2 SDRAM memory interface setup. I/O using general purpose I/O standards such as 3.0, 2.5, 1.8, or 1.5 LVTTL/LVCMOS are capable of typical 200 MHz interfacing frequency with 10 pF load.

Actual achievable frequency depends on design- and system-specific factors. Perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

July 2012 Altera Corporation Cyclone III Device Handbook

High-Speed I/O Specification

Table 2–26 through Table 2–31 list the high-speed I/O timing for Cyclone III LS devices. For more information about the definitions of high-speed timing specifications, refer to "Glossary" on page 2–26.

Table 2–26. Cyclone III LS Devices RSDS Transmitter Timing Specification (1), (2)

Symbol	Beadas		C7 and I7			C8		Unit
	Modes	Min	Тур	Max	Min	Тур	Max	
	×10	5	_	155.5	5	_	155.5	MHz
	×8	5	_	155.5	5	_	155.5	MHz
f _{HSCLK}	×7	5	_	155.5	5	_	155.5	MHz
(input clock frequency)	×4	5	_	155.5	5	_	155.5	MHz
, ,,	×2	5	_	155.5	5	_	155.5	MHz
	×1	5	_	311	5	_	311	MHz
	×10	100	_	311	100	_	311	Mbps
-	×8	80	_	311	80	_	311	Mbps
Device operation	×7	70	_	311	70	_	311	Mbps
in Mbps	×4	40	_	311	40	_	311	Mbps
	×2	20	_	311	20	_	311	Mbps
	×1	10	_	311	10	_	311	Mbps
t _{DUTY}	_	45	_	55	45	_	55	%
TCCS	_	_	_	200	_	_	200	ps
Output jitter (peak to peak)	_	_	_	500	_	_	550	ps
+	20 - 80%,		500			500		no
t _{RISE}	$C_{LOAD} = 5 pF$	_	300	_	_	300	_	ps
t	20 - 80%,		500			500		ne
t _{FALL}	$C_{LOAD} = 5 pF$		300			300		ps
t _{LOCK} (3)		_	_	1	_	_	1	ms

Notes to Table 2-26:

⁽¹⁾ Applicable for true RSDS and Emulated RSDS with three-resistor network transmitters.

⁽²⁾ True RSDS transmitter is only supported at the output pin of the Row I/O (Banks 1, 2, 5, and 6). Emulated RSDS with three-resistor network transmitter is supported at the output pin of all I/O banks.

⁽³⁾ t_{LOCK} is the time required for the PLL to lock from the end of device configuration.

Table 2–27. Cyclone III LS Devices Emulated RSDS with One-Resistor Network Transmitter Timing Specifications $^{(1)}$

Ob.al	Madaa	C7 and				7 C 8			
Symbol	Modes	Min	Тур	Max	Min	Тур	Max	Unit	
	×10	5	_	85	5	_	85	MHz	
	×8	5	_	85	5	_	85	MHz	
f _{HSCLK} (input clock	×7	5	_	85	5	_	85	MHz	
frequency)	×4	5	_	85	5	_	85	MHz	
1 37	×2	5	_	85	5	_	85	MHz	
	×1	5	_	170	5	_	170	MHz	
	×10	100	_	170	100	_	170	Mbps	
	×8	80	_	170	80	_	170	Mbps	
Device operation in	×7	70	_	170	70	_	170	Mbps	
Mbps	×4	40	_	170	40	_	170	Mbps	
·	×2	20	_	170	20	_	170	Mbps	
	×1	10	_	170	10	_	170	Mbps	
t _{DUTY}	_	45	_	55	45	_	55	%	
TCCS	_	_	_	200	_	_	200	ps	
Output jitter (peak to peak)	_	_	_	500	_	_	550	ps	
t _{RISE}	$20 - 80\%$, $C_{LOAD} = 5 pF$	_	500	_	_	500	_	ps	
t _{FALL}	$20 - 80\%$, $C_{LOAD} = 5 pF$	_	500	_	_	500		ps	
t _{LOCK} (2)	_	-	-	1	_	_	1	ms	

Notes to Table 2-27:

- (1) Emulated RSDS with one-resistor network transmitter is supported at the output pin of all I/O banks.
- (2) t_{LOCK} is the time required for the PLL to lock from the end of device configuration.

Table 2–28. Cyclone III LS Devices Mini-LVDS Transmitter Timing Specification (1), (2) (Part 1 of 2)

Symbol	Modes	C7 and I7		C8			Unit	
	Mones	Min	Тур	Max	Min	Тур	Max	UIIIL
	×10	5		155.5	5	_	155.5	MHz
	×8	5	_	155.5	5	_	155.5	MHz
f _{HSCLK} (input	×7	5		155.5	5	_	155.5	MHz
clock frequency)	×4	5	_	155.5	5	_	155.5	MHz
	×2	5	_	155.5	5	_	155.5	MHz
	×1	5	_	311	5	_	311	MHz

July 2012 Altera Corporation Cyclone III Device Handbook Volume 2

Table 2–28. Cyclone III LS Devices Mini-LVDS Transmitter Timing Specification (1), (2) (Part 2 of 2)

Symbol	Madas		C7 and I7			C8		IImit.
	Modes	Min	Тур	Max	Min	Тур	Max	Unit
	×10	100	_	311	100	_	311	Mbps
	×8	80	_	311	80	_	311	Mbps
Device operation	×7	70	_	311	70	_	311	Mbps
in Mbps	×4	40	_	311	40	_	311	Mbps
	×2	20	_	311	20	_	311	Mbps
	×1	10	_	311	10	_	311	Mbps
t _{DUTY}	_	45	_	55	45	_	55	%
TCCS	_	_	_	200	_	_	200	ps
Output jitter (peak to peak)	_	_	_	500	_	_	550	ps
t _{RISE}	$20 - 80\%$, $C_{LOAD} = 5 \text{ pF}$	_	500	_	_	500	_	ps
t _{FALL}	$20 - 80\%$, $C_{LOAD} = 5 \text{ pF}$	_	500	_	_	500	_	ps
t _{LOCK} (3)	_	_	_	1	_	_	1	ms

Notes to Table 2-28:

⁽¹⁾ Applicable for true and emulated mini-LVDS with three-resistor network transmitter.

⁽²⁾ True mini-LVDS transmitter is only supported at the output pin of the Row I/O (Banks 1, 2, 5, and 6). Emulated mini-LVDS with three-resistor network transmitter is supported at the output pin of all I/O banks.

⁽³⁾ t_{LOCK} is the time required for the PLL to lock from the end of device configuration.

Table 2–29. Cyclone III LS Devices True LVDS Transmitter Timing Specifications (1)

Symbol	Modoo	C7 a	nd 17	C	8	IImi#
Symbol	Modes	Min	Max	Min	Max	Unit
	×10	5	370	5	320	MHz
	×8	5	370	5	320	MHz
f _{HSCLK} (input	×7	5	370	5	320	MHz
clock frequency)	×4	5	370	5	320	MHz
	×2	5	370	5	320	MHz
	×1	5	402.5	5	402.5	MHz
	×10	100	740	100	640	Mbps
	×8	80	740	80	640	Mbps
HSIODR	×7	70	740	70	640	Mbps
חסוטטה	×4	40	740	40	640	Mbps
	×2	20	740	20	640	Mbps
	×1	10	402.5	10	402.5	Mbps
t _{DUTY}	_	45	55	45	55	%
TCCS	_	_	200	_	200	ps
Output jitter (peak to peak)	_	_	500	_	550	ps
t _{LOCK} (2)	_	_	1	_	1	ms

Notes to Table 2-29:

- (1) True LVDS transmitter is only supported at the output pin of the Row I/O (Banks 1, 2, 5, and 6).
- (2) t_{LOCK} is the time required for the PLL to lock from the end of device configuration.

Table 2–30. Cyclone III LS Devices Emulated LVDS with Three-Resistor Network Transmitter Timing Specifications $^{(1)}$ (Part 1 of 2)

Symbol	Madaa	C7 a	nd 17	C	8	II:A
	Modes	Min	Max	Min	Max	Unit
	×10	5	320	5	275	MHz
	×8	5	320	5	275	MHz
f _{HSCLK} (input	×7	5	320	5	275	MHz
clock frequency)	×4	5	320	5	275	MHz
	×2	5	320	5	275	MHz
	×1	5	402.5	5	402.5	MHz
	×10	100	640	100	550	Mbps
	×8	80	640	80	550	Mbps
HSIODR	×7	70	640	70	550	Mbps
HOIODN	×4	40	640	40	550	Mbps
	×2	20	640	20	550	Mbps
	×1	10	402.5	10	402.5	Mbps
t _{DUTY}	_	45	55	45	55	%

July 2012 Altera Corporation Cyclone III Device Handbook Volume 2

Table 2–30. Cyclone III LS Devices Emulated LVDS with Three-Resistor Network Transmitte	ľ
Timing Specifications ⁽¹⁾ (Part 2 of 2)	

Cumbal	Madaa	C7 a	nd I7	C	IImit.	
Symbol	Modes	Min	Max	Min	Max	Unit
TCCS	_	_	200	_	200	ps
Output jitter (peak to peak)	_	_	500	_	550	ps
t _{LOCK} (2)	_	_	1	_	1	ms

Notes to Table 2-30:

- (1) Emulated LVDS with three-resistor network transmitter is supported at the output pin of all I/O banks.
- (2) t_{LOCK} is the time required for the PLL to lock from the end of device configuration.

Table 2–31. Cyclone III LS Devices LVDS Receiver Timing Specifications (1)

Cumbal	Madaa	C7 a	nd 17	C	8	11:-
Symbol	Modes	Min	Max	Min	Max	Unit
	×10	5	370	5	320	MHz
	×8	5	370	5	320	MHz
f _{HSCLK} (input	×7	5	370	5	320	MHz
clock frequency)	×4	5	370	5	320	MHz
	×2	5	370	5	320	MHz
	×1	5	402.5	5	402.5	MHz
	×10	100	740	100	640	Mbps
	×8	80	740	80	640	Mbps
HSIODR	×7	70	740	70	640	Mbps
HOIODI	×4	40	740	40	640	Mbps
	×2	20	740	20	640	Mbps
	×1	10	402.5	10	402.5	Mbps
SW	_	_	400	_	400	%
Input jitter tolerance	_	_	500	_	550	ps
t _{LOCK} (2)	_	_	1	_	1	ps

Notes to Table 2-31:

- (1) True LVDS receiver is supported at all banks.
- (2) t_{LOCK} is the time required for the PLL to lock from the end of device configuration.

External Memory Interface Specifications

Cyclone III LS devices support external memory interfaces up to 200 MHz. The external memory interfaces for Cyclone III LS devices are auto-calibrating and easy to implement.

Table 2–32 and Table 2–33 list the external memory interface specifications for Cyclone III LS devices and are useful when performing memory interface timing analysis.

For more information about external memory system performance specifications, board design guidelines, timing analysis, simulation, and debugging information, refer to *Literature: External Memory Interfaces*.

Table 2–32. FPGA Sampling Window (SW) Requirement—Read Side (1)

Momenty Standard	Column	Column I/Os (ps)		/Os (ps)	Wraparound Mode (ps)		
Memory Standard	Setup	Hold	Setup	Hold	Setup	Hold	
		C	7				
DDR2 SDRAM	705	650	770	715	985	930	
DDR SDRAM	675	620	795	740	970	915	
QDRII SRAM	900	845	910	855	1085	1030	
		C	8				
DDR2 SDRAM	785	720	930	870	1115	1055	
DDR SDRAM	800	740	915	855	1185	1125	
QDRII SRAM	1050	990	1065	1005	1210	1150	
		17	7				
DDR2 SDRAM	765	710	855	800	1040	985	
DDR SDRAM	745	690	880	825	1000	945	
QDRII SRAM	945	890	955	900	1130	1075	

Note to Table 2-32:

Table 2–33. Cyclone III LS Devices Transmitter Channel-to-Channel Skew (TCCS)—Write Side (1) (Part 1 of 2)

Mamaru Standard	I/O Chandard	Column	I/Os (ps)	Row I/	Os (ps)	Wraparoun	d Mode (ps)
Memory Standard	I/O Standard	Lead	Lag	Lead	Lag	Lead	Lag
			C7				
DDR2 SDRAM	SSTL-18 Class I	915	410	915	410	1015	510
DUNZ SUNAIVI	SSTL-18 Class II	1025	545	1025	545	1125	645
DDR SDRAM	SSTL-2 Class I	880	340	880	340	980	440
DDU 2DUAIN	SSTL-2 Class II	1010	380	1010	380	1010	480
QDRII SRAM	1.8-V HSTL Class I	910	450	910	450	1010	550
QUNII SNAW	1.8-V HSTL Class II	1010	570	1010	570	1110	670
			C8				
DDR2 SDRAM	SSTL-18 Class I	1040	440	1040	440	1140	540
DUNZ SUNAIVI	SSTL-18 Class II	1180	600	1180	600	1280	700
DDD CDDAM	SSTL-2 Class I	1010	360	1010	360	1110	460
DDR SDRAM	SSTL-2 Class II	1160	410	1160	410	1260	510
QDRII SRAM	1.8-V HSTL Class I	1040	490	1040	490	1140	590
QUNII SHAW	1.8-V HSTL Class II	1190	630	1190	630	1290	730

July 2012 Altera Corporation Cyclone III Device Handbook Volume 2

⁽¹⁾ Column I/Os refer to top and bottom I/Os. Row I/Os refer to right and left I/Os. Wraparound mode refers to the combination of column and row I/Os.

Table 2–33. Cyclone III LS Devices Transmitter Channel-to-Channel Skew (TCCS)—Write Side (1) (Part 2 of 2)

Momenty Standard	I/O Standard	Column	Column I/Os (ps)		Os (ps)	Wraparound Mode (ps)		
Memory Standard	i/O Stalluaru	Lead	Lag	Lead	Lag	Lead	Lag	
17								
DDR2 SDRAM	SSTL-18 Class I	961	431	961	431	1061	531	
DDR2 SDRAW	SSTL-18 Class II	1076	572	1076	572	1176	672	
DDR SDRAM	SSTL-2 Class I	924	357	924	357	1024	457	
DDU 2DUAINI	SSTL-2 Class II	1061	399	1061	399	1161	499	
QDRII SRAM	1.8-V HSTL Class I	956	473	956	473	1056	573	
QUNII SHAWI	1.8-V HSTL Class II	1061	599	1061	599	1161	699	

Note to Table 2-33:

Table 2–34 lists the Cyclone III LS devices memory ouput clock jitter specifications.

Table 2–34. Cyclone III LS Devices Memory Output Clock Jitter Specifications (1), (2)

Parameter	Symbol	Min	Max	Unit
Clock period jitter	t _{JIT} (per)	-125	125	ps
Cycle-to-cycle period jitter	t _{JIT} (cc)	-200	200	ps
Duty cycle jitter	t _{JIT} (duty)	-150	150	ps

Notes to Table 2-34:

- (1) The memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2 standard.
- (2) The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL output routed on a global clock network.

Duty Cycle Distortion Specification

Table 2–35 lists the worst case duty cycle distortion for Cyclone III LS devices.

Table 2–35. Duty Cycle Distortion on Cyclone III LS Devices I/O Pins (1), (2)

Symbol	C7	, I7	C	Unit	
Symbol	Min	Max	Min	Max	Ullit
Output Duty Cycle	45	55	45	55	%

Notes to Table 2-35:

- (1) The duty cycle distortion specification applies to clock outputs from the PLLs, global clock tree, and I/O element (IOE) driving the dedicated and general purpose I/O pins.
- (2) Cyclone III LS devices meet the DCD specifications at the maximum output toggle rate for each combination of the I/O standard and current strength.

⁽¹⁾ Column I/O banks refer to top and bottom I/Os. Row I/O banks refer to right and left I/Os. Wraparound mode refers to the combination of column and row I/Os.

OCT Calibration Timing Specification

Table 2–36 lists the duration of calibration for series OCT with calibration at device power-up for Cyclone III LS devices.

Table 2–36. Cyclone III LS Devices Timing Specification for Series OCT with Calibration at Device Power-Up $^{(1)}$

Symbol	Description	Maximum	Unit
t _{OCTCAL}	Duration of series OCT with calibration at device power-up	20	μs

Note to Table 2-36:

(1) OCT calibration takes place after device configuration, before entering user mode.

IOE Programmable Delay

Table 2–37 and Table 2–38 list the IOE programmable delay for Cyclone III LS devices.

Table 2-37. Cyclone III LS Devices IOE Programmable Delay on the Column Pins (1), (2)

					N	lax Offs	et		
Parameter	Paths Affected	Number Min of Offset	Fast Corner		Slow Corner			Unit	
		setting	setting		C 7	C 7	C8	17	
Input delay from the pin to the internal cells	Pad to I/O dataout to core	7	0	1.211	1.314	2.339	2.416	2.397	ns
Input delay from the pin to the input register	Pad to I/O input register	8	0	1.203	1.307	2.387	2.540	2.430	ns
Delay from the output register to the output pin	I/O output register to pad	2	0	0.518	0.559	1.065	1.151	1.082	ns
Input delay from the dual-purpose clock pin to the fan-out destinations	Pad to global clock network	12	0	0.533	0.56	1.077	1.182	1.087	ns

Notes to Table 2-37:

- (1) The incremental values for the settings are generally linear. For the exact values of each setting, use the latest version of the Quartus II software.
- (2) The minimum and maximum offset timing numbers refer to the ${\bf 0}$ setting available in the Quartus II software.

Table 2-38. Cyclone III LS Devices IOE Programmable Delay on Row Pins (1), (2)

	Number			Max Offset					
Parameter	Paths Affected	of setting	Min Offset	Fast Corner		Slow Corner			Unit
				17	C 7	C 7	C8	17	
Input delay from the pin to the internal cells	Pad to I/O dataout to core	7	0	1.209	1.314	2.352	2.514	2.432	ns
Input delay from the pin to the input register	Pad to I/O input register	8	0	1.207	1.312	2.402	2.558	2.447	ns
Delay from the output register to the output pin	I/O output register to pad	2	0	0.549	0.595	1.135	1.226	1.151	ns

July 2012 Altera Corporation Cyclone III Device Handbook
Volume 2

		Number		Max Offset					
Parameter	Paths Affected	ea or _{Off}	Min Offset	Fast Corner		Slow Corner			Unit
	setting			17	C 7	C 7	C 8	17	
Input delay from the dual-purpose clock pin to the fan-out destinations	Pad to global clock network	12	0	0.52	0.54	1.052	1.16	1.061	ns

Table 2–38. Cyclone III LS Devices IOE Programmable Delay on Row Pins (1), (2)

Notes to Table 2-38:

- (1) The incremental values for the settings are generally linear. For the exact values of each setting, use the latest version of the Quartus II software.
- (2) The minimum and maximum offset timing numbers refer to the **0** setting available in the Quartus II software.

I/O Timing

DirectDrive technology and MultiTrack interconnect ensure predictable performance, accurate simulation, and accurate timing analysis across all Cyclone III LS device densities and speed grades.

Use the following methods to determine I/O timing:

- The Excel-based I/O timing
- The Quartus II Timing Analyzer

Excel-based I/O timing provides pin timing performance for each device density and speed grade. The data is typically used before designing the FPGA to get a timing budget estimation as part of the link timing analysis. The Quartus II Timing Analyzer provides a more accurate and precise I/O timing data based on the specifics of the design after place-and-route is complete.

For more information about the Excel-based I/O timing spreadsheet, refer to the *Cyclone III Devices* Literature page on the Altera website.

All specifications are representative of worst-case supply voltage and junction temperature conditions. Altera characterizes timing delays at the worst-case process, minimum voltage, and maximum temperature for input register setup time (t_{SU}) and hold time (t_{H}) .

For more information about timing delay from the FPGA output to the receiving device for system-timing analysis, refer to *AN 366: Understanding I/O Output Timing for Altera Devices.*

Glossary

Table 2–39 lists the glossary for this chapter.

Table 2-39. Glossary (Part 1 of 6)

Letter	Term	Definitions
Α	_	_
В	_	_
C		_

Table 2-39. Glossary (Part 2 of 6)

Letter	Term	Definitions
D	_	_
E	_	_
F	f _{HSCLK}	High-speed I/O Block: High-speed receiver and transmitter input and output clock frequency.
G	GCLK	Input pin directly to the global clock network.
	GCLK PLL	Input pin to the global clock network through the PLL.
Н	HSIODR	High-speed I/O Block: Maximum and minimum LVDS data transfer rate (HSIODR = 1/TUI).
1	Input Waveforms for the SSTL Differential I/O Standard	Vswing V _{IH} Vswing V _{IL}
J	JTAG Waveform	TDI TDI TDI TCK TDO TDO TJPZX TJPSU_TDI TJPSU_TDI TJPSU_TMS TJPSU_TMS TJPYZ TDO TJPXZ TJPXZ TJSXZ TJSXZ
K	_	_
L		_
M	_	_
N		-
0	_	

Table 2-39. Glossary (Part 3 of 6)

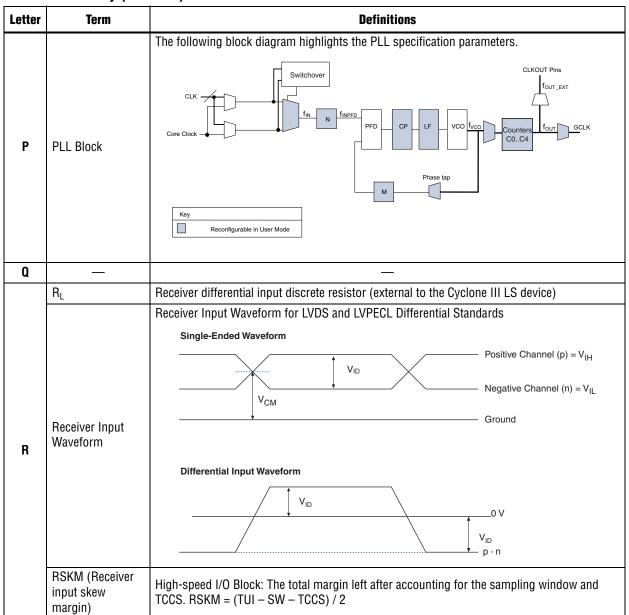


Table 2-39. Glossary (Part 4 of 6)

Letter	Term	Definitions
S	Single-ended Voltage referenced I/O Standard	The JEDEC standard for SSTI and HSTL I/O standards defines both the AC and DC input signal values. The AC values indicate the voltage levels at which the receiver must meet its timing specifications. The DC values indicate the voltage levels at which the final logic state of the receiver is unambiguously defined. After the receiver input crosses the AC value, the receiver changes to the new logic state. The new logic state is then maintained as long as the input stays beyond the DC threshold. This approach is intended to provide predictable receiver timing in the presence of input waveform ringing.
	SW (Sampling Window)	High-speed I/O Block: The period of time during which the data must be valid to capture it correctly. The setup and hold times determine the ideal strobe position in the sampling window.
	t _C	High-speed receiver and transmitter input and output clock period.
	TCCS (Channel- to-channel-skew)	High-speed I/O Block: The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew. The clock is included in the TCCS measurement.
	tcin	Delay from the clock pad to the I/O input register.
	t _{CO}	Delay from the clock pad to the I/O output.
	tcout	Delay from the clock pad to the I/O output register.
	t _{DUTY}	High-speed I/O Block: Duty cycle on the high-speed transmitter output clock.
Т	t _{FALL}	Signal high-to-low transition time (80 to 20%).
•	t _H	Input register hold time.
	Timing Unit Interval (TUI)	High-speed I/O block: The timing budget allowed for skew, propagation delays, and the data sampling window. (TUI = $1/(Receiver\ Input\ Clock\ Frequency\ Multiplication\ Factor) = t_C/w)$.
	t _{INJITTER}	Period jitter on the PLL clock input.
	t _{OUTJITTER_DEDCLK}	Period jitter on the dedicated clock output driven by a PLL.
	t _{OUTJITTER_IO}	Period jitter on the general purpose I/O driven by a PLL.
	tpllcin	Delay from the PLL inclk pad to the I/O input register.
	tpllcout	Delay from the PLL inclk pad to the I/O output register.

July 2012 Altera Corporation Cyclone III Device Handbook

Table 2-39. Glossary (Part 5 of 6)

Letter	Term	Definitions
		Transmitter output waveforms for the LVDS, mini-LVDS, PPDS, and RSDS differential I/O standards Single-Ended Waveform
		Positive Channel (p) = V _{OH}
		Vos Negative Channel (n) = V _{OL}
	Transmitter Output Waveform	Ground
		Differential Waveform (Mathematical Function of Positive & Negative Channel)
		V _{OD} 0 V p - n (1)
	t _{RISE}	Signal low-to-high transition time (20–80%).
	t _{SU}	Input register setup time.
U	_	_

Table 2-39. Glossary (Part 6 of 6)

Letter	r Term Definitions	
	V _{CM(DC)}	DC common mode input voltage.
	V _{DIF(AC)}	AC differential Input Voltage—The minimum AC input differential voltage required for switching.
	V _{DIF(DC)}	DC differential Input Voltage—The minimum DC input differential voltage required for switching.
	V _{ICM}	Input Common Mode Voltage—The common mode of the differential signal at the receiver.
	V _{ID}	Input differential Voltage Swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.
	V _{IH}	Voltage Input High—The minimum positive voltage applied to the input that is accepted by the device as a logic high.
	V _{IH(AC)}	High-level AC input voltage.
	V _{IH(DC)}	High-level DC input voltage.
	V _{IL}	Voltage Input Low—The maximum positive voltage applied to the input that is accepted by the device as a logic low.
	V _{IL (AC)}	Low-level AC input voltage.
	V _{IL (DC)}	Low-level DC input voltage.
	V _{IN}	DC input voltage.
	V _{OCM}	Output Common Mode Voltage—The common mode of the differential signal at the transmitter.
V	V _{OD}	Output differential Voltage Swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter. $V_{OD} = V_{OH} - V_{OL}$.
	V _{OH}	Voltage Output High—The maximum positive voltage from an output that the device considers will be accepted as the minimum positive high level.
	V _{OL}	Voltage Output Low—The maximum positive voltage from an output that the device considers will be accepted as the maximum positive low level.
	V _{OS}	Output offset voltage— $V_{OS} = (V_{OH} + V_{OL}) / 2$.
	V _{OX (AC)}	AC differential Output cross point voltage—The voltage at which the differential output signals must cross.
	V _{REF}	Reference voltage for the SSTL and HSTL I/O standards.
	V _{REF (AC)}	AC input reference voltage for the SSTL and HSTL I/O standards. $V_{REF(AC)} = V_{REF(DC)} + noise$. The peak-to-peak AC noise on V_{REF} must not exceed 2% of $V_{REF(DC)}$.
	V _{REF (DC)}	DC input reference voltage for the SSTL and HSTL I/O standards.
	V _{SWING (AC)}	AC differential Input Voltage—AC Input differential voltage required for switching. Refer to Input Waveforms for the SSTL Differential I/O Standard.
	V _{SWING (DC)}	DC differential Input Voltage—DC Input differential voltage required for switching. Refer to Input Waveforms for the SSTL Differential I/O Standard.
	V _{TT}	Termination voltage for the SSTL and HSTL I/O standards.
	V _{X (AC)}	AC differential Input cross point Voltage—The voltage at which the differential input signals must cross.
W	_	_
Χ	_	_
Υ		
Z		_

July 2012 Altera Corporation Cyclone III Device Handbook

Document Revision History

Table 2–40 lists the revision history for this document.

Table 2-40. Document Revision History

Date	Version	Changes
	1.4	■ Updated minimum f _{HSCLK} value to 5 MHz.
July 2012		■ Updated absolute maximum T _J to 125 °C in Table 2–1.
		Finalized all preliminary information.
December 2011	1.3	■ Updated "Supply Current" on page 2–5, "Periphery Performance" on page 2–17, and "External Memory Interface Specifications" on page 2–22.
December 2011		■ Updated Table 2–1, Table 2–3, Table 2–13, Table 2–16, Table 2–17, Table 2–20, and Table 2–25.
	1.2	■ Updated Table 2–19 through Table 2–34, Table 2–37, and Table 2–38.
December 2009		■ Updated the "Periphery Performance" on page 2–17 section.
		Minor changes to the text.
July 2009	1.1	Minor edit to the hyperlinks.
June 2009	1.0	Initial release.